An additional phosphate-binding element in arrestin molecule - Implications for the mechanism of arrestin activation

被引:145
作者
Vishnivetskiy, SA
Schubert, C
Climaco, GC
Gurevich, YV
Velez, MG
Gurevich, VV
机构
[1] Sun Hlth Res Inst, Ralph & Muriel Roberts Lab Vis Sci, Sun City, AZ 85372 USA
[2] Yale Univ, Howard Hughes Med Inst, New Haven, CT 06511 USA
[3] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06511 USA
关键词
D O I
10.1074/jbc.M007159200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Arrestins quench the signaling of a wide variety of G protein-coupled receptors by virtue of high-affinity binding to phosphorylated activated receptors, The high selectivity of arrestins for this particular functional form of receptor ensures their timely binding and dissociation. In a continuing effort to elucidate the molecular mechanisms responsible for arrestin's selectivity, we used the visual arrestin model to probe the functions of its N-terminal beta -strand I comprising the highly conserved hydrophobic element Val-Ile-Phe (residues 11-13) and the adjacent positively charged Lys(14) and Lys(15). Charge elimination and reversal in positions 14 and 15 dramatically reduce arrestin binding to phosphorylated light-activated rhodopsin (P-Rh*). The same mutations in the context of various constitutively active arrestin mutants (which bind to P-Rh*, dark phosphorylated rhodopsin (P-Rh), and unphosphorylated light-activated rhodopsin (Rh*)) have minimum impact on P-Rh* and Rh* binding and virtually eliminate P-Rh binding. These results suggest that the two lysines "guide" receptor-attached phosphates toward the phosphorylation-sensitive trigger Arg(175) and participate in phosphate binding in the active state of arrestin, The elimination of the hydrophobic side chains of residues 11-13 (triple mutation V11A, I12A, and F13A) moderately enhances arrestin binding to P-Rh and Rh*, The effects of triple mutation V11A, I12A, and F13A in the context of phosphorylation-independent mutants suggest that residues 11-13 play a dual role. They stabilize arrestin's basal conformation via interaction with hydrophobic elements in arrestin's C-tail and alpha -helix I as well as its active state by interactions with alternative partners. In the context of the recently solved crystal structure of arrestin's basal state, these findings allow us to propose a model of initial phosphate-driven structural rearrangements in arrestin that ultimately result in its transition into the active receptor-binding state.
引用
收藏
页码:41049 / 41057
页数:9
相关论文
共 35 条
[1]   beta-arrestin acts as a clathrin adaptor in endocytosis of the beta(2)-adrenergic receptor [J].
Goodman, OB ;
Krupnick, JG ;
Santini, F ;
Gurevich, VV ;
Penn, RB ;
Gagnon, AW ;
Keen, JH ;
Benovic, JL .
NATURE, 1996, 383 (6599) :447-450
[2]   X-ray crystal structure of arrestin from bovine rod outer segments [J].
Granzin, J ;
Wilden, U ;
Choe, HW ;
Labahn, J ;
Krafft, B ;
Büldt, G .
NATURE, 1998, 391 (6670) :918-921
[3]   Arrestin with a single amino acid substitution quenches light-activated rhodopsin in a phosphorylation-independent fashion [J].
GrayKeller, MP ;
Detwiler, PB ;
Benovic, JL ;
Gurevich, VV .
BIOCHEMISTRY, 1997, 36 (23) :7058-7063
[4]  
GUREVICH VV, 1993, J BIOL CHEM, V268, P11628
[5]  
Gurevich VV, 2000, METHOD ENZYMOL, V315, P422
[6]   Agonist-receptor-arrestin, an alternative ternary complex with high agonist affinity [J].
Gurevich, VV ;
PalsRylaarsdam, R ;
Benovic, JL ;
Hosey, MM ;
Onorato, JJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (46) :28849-28852
[7]  
GUREVICH VV, 1994, J BIOL CHEM, V269, P8721
[8]  
Gurevich VV, 1996, METHOD ENZYMOL, V275, P382
[9]   ARRESTIN INTERACTIONS WITH G-PROTEIN-COUPLED RECEPTORS - DIRECT BINDING-STUDIES OF WILD-TYPE AND MUTANT ARRESTINS WITH RHODOPSIN, BETA(2)-ADRENERGIC, AND M2-MUSCARINIC CHOLINERGIC RECEPTORS [J].
GUREVICH, VV ;
DION, SB ;
ONORATO, JJ ;
PTASIENSKI, J ;
KIM, CM ;
STERNEMARR, R ;
HOSEY, MM ;
BENOVIC, JL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (02) :720-731
[10]   Mechanism of phosphorylation-recognition by visual arrestin and the transition of arrestin into a high affinity binding state [J].
Gurevich, VV ;
Benovic, JL .
MOLECULAR PHARMACOLOGY, 1997, 51 (01) :161-169