Asymptotics for Lasso-type estimators

被引:31
作者
Knight, K
Fu, WJ
机构
[1] Univ Toronto, Dept Stat, Toronto, ON M5S 3G3, Canada
[2] Michigan State Univ, Dept Epidemiol, E Lansing, MI 48823 USA
关键词
penalized regression; Lasso; shrinkage estimation; epi-convergence in distribution;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the asymptotic behavior of regression estimators that minimize the residual sum of squares plus a penalty proportional to Sigma\beta (j)\(gamma) for some gamma > 0. These estimators include the Lasso as a special case when gamma = 1. Under appropriate conditions, we show that the limiting distributions can have positive probability mass at 0 when the true value of the parameter is 0. We also consider asymptotics for "nearly singular" designs.
引用
收藏
页码:1356 / 1378
页数:23
相关论文
共 20 条
[1]   COX REGRESSION-MODEL FOR COUNTING-PROCESSES - A LARGE SAMPLE STUDY [J].
ANDERSEN, PK ;
GILL, RD .
ANNALS OF STATISTICS, 1982, 10 (04) :1100-1120
[2]  
BESAG J, 1986, J R STAT SOC B, V48, P259
[3]   Atomic decomposition by basis pursuit [J].
Chen, SSB ;
Donoho, DL ;
Saunders, MA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01) :33-61
[4]  
FAN J, 1999, UNPUB VARIABLE SELEC
[5]  
Fiacco AV, 1990, NONLINEAR PROGRAMMIN
[6]   A STATISTICAL VIEW OF SOME CHEMOMETRICS REGRESSION TOOLS [J].
FRANK, IE ;
FRIEDMAN, JH .
TECHNOMETRICS, 1993, 35 (02) :109-135
[7]  
FU WJ, 1999, UNPUB ESTIMATING EFF
[8]   Penalized regressions: The bridge versus the lasso [J].
Fu, WJJ .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1998, 7 (03) :397-416
[9]   ON THE ASYMPTOTICS OF CONSTRAINED M-ESTIMATION [J].
GEYER, CJ .
ANNALS OF STATISTICS, 1994, 22 (04) :1993-2010
[10]  
GEYER CJ, 1996, UNPUB ASYMPTOTICS CO