Exercise-induced increase in muscle insulin sensitivity

被引:317
作者
Holloszy, JO [1 ]
机构
[1] Washington Univ, Sch Med, Dept Internal Med, Div Geriatr & Nutr Sci, St Louis, MO 63110 USA
关键词
AMP-activated protein kinase; GLUT4; hypoxia; muscle contractions;
D O I
10.1152/japplphysiol.00123.2005
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Exercise/ muscle contraction activates glucose transport. The increase in muscle glucose transport induced by exercise is independent of insulin. As the acute effect of exercise on glucose transport wears off, it is replaced by an increase in insulin sensitivity. An increase in insulin sensitivity results in a shift in the insulin dose-response curve to the left, with a decrease in the concentration of insulin needed to induce 50% of the maximal response. This phenomenon, which plays a major role in rapid muscle glycogen accumulation after exercise, is not mediated by amplification of the insulin signal. Development of the increase in insulin sensitivity after contractions does not require protein synthesis or activation of p38 MAPK. It does require the presence of a serum protein during the period of contractile activity. The effect of exercise on muscle insulin sensitivity is mimicked by hypoxia and by treatment of muscles with 5-aminoimidazole-4-carboxamide-1-beta-D- ribofuranoside to activate AMP-activated protein kinase. The postexercise increase in sensitivity of muscle glucose transport to activation is not specific for insulin but also involves an increased susceptibility to activation by a submaximal contraction/hypoxia stimulus. The increase in insulin sensitivity is mediated by translocation of more GLUT4 glucose transporters to the cell surface in response to a submaximal insulin stimulus. Although the postexercise increase in muscle insulin sensitivity has been characterized in considerable detail, the basic mechanisms underlying this phenomenon remain a mystery.
引用
收藏
页码:338 / 343
页数:6
相关论文
共 70 条
[1]   MUSCLE GLYCOGEN SYNTHESIS AFTER EXERCISE - AN ENHANCING FACTOR LOCALIZED TO MUSCLE CELLS IN MAN [J].
BERGSTROM, J ;
HULTMAN, E .
NATURE, 1966, 210 (5033) :309-+
[2]   STIMULATION OF GLUCOSE-TRANSPORT IN SKELETAL-MUSCLE BY HYPOXIA [J].
CARTEE, GD ;
DOUEN, AG ;
RAMLAL, T ;
KLIP, A ;
HOLLOSZY, JO .
JOURNAL OF APPLIED PHYSIOLOGY, 1991, 70 (04) :1593-1600
[3]   EXERCISE INCREASES SUSCEPTIBILITY OF MUSCLE GLUCOSE-TRANSPORT TO ACTIVATION BY VARIOUS STIMULI [J].
CARTEE, GD ;
HOLLOSZY, JO .
AMERICAN JOURNAL OF PHYSIOLOGY, 1990, 258 (02) :E390-E393
[4]   PROLONGED INCREASE IN INSULIN-STIMULATED GLUCOSE-TRANSPORT IN MUSCLE AFTER EXERCISE [J].
CARTEE, GD ;
YOUNG, DA ;
SLEEPER, MD ;
ZIERATH, J ;
WALLBERGHENRIKSSON, H ;
HOLLOSZY, JO .
AMERICAN JOURNAL OF PHYSIOLOGY, 1989, 256 (04) :E494-E499
[5]  
CHENG K, 1983, MOL CELL BIOCHEM, V56, P183
[6]   MUSCLE GLUCOSE-TRANSPORT - INTERACTIONS OF INVITRO CONTRACTIONS, INSULIN, AND EXERCISE [J].
CONSTABLE, SH ;
FAVIER, RJ ;
CARTEE, GD ;
YOUNG, DA ;
HOLLOSZY, JO .
JOURNAL OF APPLIED PHYSIOLOGY, 1988, 64 (06) :2329-2332
[7]  
DOUEN AG, 1990, J BIOL CHEM, V265, P13427
[8]   GLUCOSE-TRANSPORTER LOCALIZATION IN RAT SKELETAL-MUSCLE - AUTORADIOGRAPHIC STUDY USING ATB-[2-H-3]BMPA PHOTOLABEL [J].
DUDEK, RW ;
DOHM, GL ;
HOLMAN, GD ;
CUSHMAN, SW ;
WILSON, CM .
FEBS LETTERS, 1994, 339 (03) :205-208
[9]   EFFECT OF MUSCLE GLYCOGEN-CONTENT ON GLUCOSE-UPTAKE FOLLOWING EXERCISE [J].
FELL, RD ;
TERBLANCHE, SE ;
IVY, JL ;
YOUNG, JC ;
HOLLOSZY, JO .
JOURNAL OF APPLIED PHYSIOLOGY, 1982, 52 (02) :434-437
[10]   Activation of AMP kinase enhances sensitivity of muscle glucose transport to insulin [J].
Fisher, JS ;
Gao, JP ;
Han, DH ;
Holloszy, JO ;
Nolte, LA .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2002, 282 (01) :E18-E23