An unconditionally convergent finite-difference scheme for the SIR model

被引:38
作者
Piyawong, W
Twizell, EH [1 ]
Gumel, AB
机构
[1] Brunel Univ, Dept Math Sci, Uxbridge UB8 3PH, Middx, England
[2] King Mongkuts Univ Technol, Dept Math, Bangkok 10140, Thailand
[3] Univ Manitoba, Dept Math, Winnipeg, MB R3T 2N2, Canada
关键词
SIR model; finite differences; unconditional convergence;
D O I
10.1016/S0096-3003(02)00607-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A first-order, unconditionally-stable, finite-difference scheme is developed for the numerical solution of the SIR model. It is seen that numerical simulations using the method reflect the long-term behaviour of the continuous-time system accurately. The introduction of seasonal variation into the SIR model leads to periodic and chaotic dynamics of epidemics which are present in the numerical simulations. (C) 2002 Elsevier Inc. All rights reserved.
引用
收藏
页码:611 / 625
页数:15
相关论文
共 10 条
[1]  
ANDERSON R M, 1991
[2]   Whooping cough epidemics in London, 1701-1812: Infection dynamics, seasonal forcing and the effects of malnutrition [J].
Duncan, CJ ;
Duncan, SR ;
Scott, S .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1996, 263 (1369) :445-450
[3]   MODELING THE DIFFERENT SMALLPOX EPIDEMICS IN ENGLAND [J].
DUNCAN, SR ;
SCOTT, S ;
DUNCAN, CJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1994, 346 (1318) :407-419
[4]  
Gray P., 1994, CHEM OSCILLATIONS IN
[5]  
HETHCOTE H W, 1976, Mathematical Biosciences, V28, P335, DOI 10.1016/0025-5564(76)90132-2
[6]  
Lambert J.D., 1991, NUMERICAL METHODS OR
[7]  
Luenberger DG., 1979, Introduction to Dynamic Systems: Theory, Models, and Applications
[8]  
PIYAWONG W, 2001, THESIS BRUNEL U ENGL
[9]  
Smith G.D., 1985, Numerical Solution of Partial Differential Equations: Finite Difference Methods
[10]   CHAOS-FREE NUMERICAL-SOLUTIONS OF REACTION DIFFUSION-EQUATIONS [J].
TWIZELL, EH ;
WANG, Y ;
PRICE, WG .
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1990, 430 (1880) :541-576