Mammalian target of rapamycin pathway regulates insulin signaling via subcellular redistribution of insulin receptor substrate 1 and integrates nutritional signals and metabolic signals of insulin

被引:208
作者
Takano, T [1 ]
Usui, I [1 ]
Haruta, T [1 ]
Kawahara, J [1 ]
Uno, T [1 ]
Iwata, M [1 ]
Kobayashi, M [1 ]
机构
[1] Toyama Med & Pharmaceut Univ, Dept Med 1, Toyama 9300194, Japan
关键词
D O I
10.1128/MCB.21.15.5050-5062.2001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A pathway sensitive to rapamycin, a selective inhibitor of mammalian target of rapamycin (mTOR), down-regulates effects of insulin such as activation of Akt (protein kinase B) via proteasomal degradation of insulin receptor substrate 1 (LRS-1). We report here that the pathway also plays an important role in insulin-induced subcellular redistribution of IRS-1 from the low-density microsomes (LDM) to the cytosol. After prolonged insulin stimulation, inhibition of the redistribution of IRS-1 by rapamycin resulted in increased levels of TRS-1 and the associated phosphatidylinositol (PI) 3-kinase in both the LDM and cytosol, whereas the proteasome inhibitor lactacystin increased the levels only in the cytosol. Since rapamycin but not lactacystin enhances insulin-stimulated 2-deoxyglucose (2-DOG) uptake, IRS-1-associated PI 3-kinase localized at the LDM was suggested to be important in the regulation of glucose transport. The amino acid deprivation attenuated and the amino acid excess enhanced insulin-induced Ser/Thr phosphorylation and subcellular redistribution and degradation of IRS-1 in parallel with the effects on phosphorylation of p70 S6 kinase and 4E-BP1, Accordingly, the amino acid deprivation increased and the amino acid excess decreased insulin-stimulated activation of Akt and 2-DOG uptake. Furthermore, 2-DOG uptake was affected by amino acid availability even when the degradation of IRS-1 was inhibited by lactacystin. We propose that subcellular redistribution of IRS-1, regulated by the mTOR-dependent pathway, facilitates proteasomal degradation of LRS-1, thereby down-regulating Akt, and that the pathway also negatively regulates insulin-stimulated glucose transport, probably through the redistribution of IRS-1. This work identifies a novel function of mTOR that integrates nutritional signals and metabolic signals of insulin.
引用
收藏
页码:5050 / 5062
页数:13
相关论文
共 47 条
[1]   Mechanism of activation of protein kinase B by insulin and IGF-1 [J].
Alessi, DR ;
Andjelkovic, M ;
Caudwell, B ;
Cron, P ;
Morrice, N ;
Cohen, P ;
Hemmings, BA .
EMBO JOURNAL, 1996, 15 (23) :6541-6551
[2]   Role of translocation in the activation and function of protein kinase B [J].
Andjelkovic, M ;
Alessi, DR ;
Meier, R ;
Fernandez, A ;
Lamb, NJC ;
Frech, M ;
Cron, P ;
Cohen, P ;
Lucocq, JM ;
Hemmings, BA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (50) :31515-31524
[3]   CAP defines a second signalling pathway required for insulin-stimulated glucose transport [J].
Baumann, CA ;
Ribon, V ;
Kanzaki, M ;
Thurmond, DC ;
Mora, S ;
Shigematsu, S ;
Bickel, PE ;
Pessin, JE ;
Saltiel, AR .
NATURE, 2000, 407 (6801) :202-207
[4]   Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002 [J].
Brunn, GJ ;
Williams, J ;
Sabers, C ;
Wiederrecht, G ;
Lawrence, JC ;
Abraham, RT .
EMBO JOURNAL, 1996, 15 (19) :5256-5267
[5]   INSULIN ACTION AND THE INSULIN SIGNALING NETWORK [J].
CHEATHAM, B ;
KAHN, CR .
ENDOCRINE REVIEWS, 1995, 16 (02) :117-142
[6]   Intracellular localization of phosphatidylinositide 3-kinase and insulin receptor substrate-1 in adipocytes: Potential involvement of a membrane skeleton [J].
Clark, SF ;
Martin, S ;
Carozzi, AJ ;
Hill, MM ;
James, DE .
JOURNAL OF CELL BIOLOGY, 1998, 140 (05) :1211-1225
[7]  
Coffer PJ, 1998, BIOCHEM J, V335, P1
[8]   Signaling mechanisms that regulate glucose transport [J].
Czech, MP ;
Corvera, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (04) :1865-1868
[9]   Target of rapamycin (TOR): balancing the opposing forces of protein synthesis and degradation [J].
Dennis, PB ;
Fumagalli, S ;
Thomas, G .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 1999, 9 (01) :49-54
[10]   Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases [J].
DiComo, CJ ;
Arndt, KT .
GENES & DEVELOPMENT, 1996, 10 (15) :1904-1916