Allosteric nanobodies reveal the dynamic range and diverse mechanisms of G-protein-coupled receptor activation

被引:243
作者
Staus, Dean P. [1 ]
Strachan, Ryan T. [2 ]
Manglik, Aashish [3 ]
Pani, Biswaranjan [1 ]
Kahsai, Alem W. [1 ]
Kim, Tae Hun [4 ]
Wingler, Laura M. [1 ]
Ahn, Seungkirl [1 ]
Chatterjee, Arnab [1 ]
Masoudi, Ali [1 ]
Kruse, Andrew C. [5 ]
Pardon, Els [6 ,7 ]
Steyaert, Jan [6 ,7 ]
Weis, William I. [3 ,8 ]
Prosser, R. Scott [4 ]
Kobilka, Brian K. [3 ]
Costa, Tommaso [9 ]
Lefkowitz, Robert J. [1 ,10 ,11 ]
机构
[1] Duke Univ, Med Ctr, Dept Med, Durham, NC 27710 USA
[2] Univ N Carolina, Dept Pharmacol, Chapel Hill, NC 27599 USA
[3] Stanford Univ, Sch Med, Dept Mol & Cellular Physiol, Stanford, CA 94305 USA
[4] Univ Toronto, Dept Chem, 3359 Mississauga Rd North, Mississauga, ON L5L 1C6, Canada
[5] Harvard Med Sch, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA
[6] Vrije Univ Brussel, Struct Biol Brussels, Pl Laan 2, B-1050 Brussels, Belgium
[7] VIB, Struct Biol Res Ctr, Pl Laan 2, B-1050 Brussels, Belgium
[8] Stanford Univ, Sch Med, Dept Struct Biol, Stanford, CA 94305 USA
[9] Ist Super Sanita, Dept Pharmacol, I-00161 Rome, Italy
[10] Duke Univ, Med Ctr, Dept Biochem, Durham, NC 27710 USA
[11] Howard Hughes Med Inst, Chevy Chase, MD 20815 USA
关键词
TERNARY COMPLEX MODEL; BETA(2)-ADRENERGIC RECEPTOR; CONFORMATIONS; EFFICACY; BINDING; STATE;
D O I
10.1038/nature18636
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
G-protein-coupled receptors (GPCRs) modulate many physiological processes by transducing a variety of extracellular cues into intracellular responses. Ligand binding to an extracellular orthosteric pocket propagates conformational change to the receptor cytosolic region to promote binding and activation of downstream signalling effectors such as G proteins and beta-arrestins. It is well known that different agonists can share the same binding pocket but evoke unique receptor conformations leading to a wide range of downstream responses ('efficacy')(1). Furthermore, increasing biophysical evidence, primarily using the beta(2)-adrenergic receptor (beta(2)AR) as a model system, supports the existence of multiple active and inactive conformational states(2-5). However, how agonists with varying efficacy modulate these receptor states to initiate cellular responses is not well understood. Here we report stabilization of two distinct beta(2)AR conformations using single domain camelid antibodies (nanobodies)-a previously described positive allosteric nanobody (Nb80)(6,7) and a newly identified negative allosteric nanobody (Nb60). We show that Nb60 stabilizes a previously unappreciated low-affinity receptor state which corresponds to one of two inactive receptor conformations as delineated by X-ray crystallography and NMR spectroscopy. We find that the agonist isoprenaline has a 15,000-fold higher affinity for beta(2)AR in the presence of Nb80 compared to the affinity of isoprenaline for beta(2)AR in the presence of Nb60, highlighting the full allosteric range of a GPCR. Assessing the binding of 17 ligands of varying efficacy to the beta(2)AR in the absence and presence of Nb60 or Nb80 reveals large ligand-specific effects that can only be explained using an allosteric model which assumes equilibrium amongst at least three receptor states. Agonists generally exert efficacy by stabilizing the active Nb80-stabilized receptor state (R-80). In contrast, for a number of partial agonists, both stabilization of R-80 and destabilization of the inactive, Nb60-bound state (R-60) contribute to their ability to modulate receptor activation. These data demonstrate that ligands can initiate a wide range of cellular responses by differentially stabilizing multiple receptor states.
引用
收藏
页码:448 / +
页数:17
相关论文
共 36 条
[1]   PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution [J].
Adams, Paul D. ;
Afonine, Pavel V. ;
Bunkoczi, Gabor ;
Chen, Vincent B. ;
Davis, Ian W. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Hung, Li-Wei ;
Kapral, Gary J. ;
Grosse-Kunstleve, Ralf W. ;
McCoy, Airlie J. ;
Moriarty, Nigel W. ;
Oeffner, Robert ;
Read, Randy J. ;
Richardson, David C. ;
Richardson, Jane S. ;
Terwilliger, Thomas C. ;
Zwart, Peter H. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 :213-221
[2]  
Ballesteros J. A., 1995, Neuroscience Methods, P366, DOI [DOI 10.1016/S1043-9471, DOI 10.1016/S1043-9471(05)80049-7]
[3]   Activation of the β2-adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6 [J].
Ballesteros, JA ;
Jensen, AD ;
Liapakis, G ;
Rasmussen, SGF ;
Shi, L ;
Gether, U ;
Javitch, JA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (31) :29171-29177
[4]   MolProbity: all-atom structure validation for macromolecular crystallography [J].
Chen, Vincent B. ;
Arendall, W. Bryan, III ;
Headd, Jeffrey J. ;
Keedy, Daniel A. ;
Immormino, Robert M. ;
Kapral, Gary J. ;
Murray, Laura W. ;
Richardson, Jane S. ;
Richardson, David C. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 :12-21
[5]  
Colquhoun D, 1998, BRIT J PHARMACOL, V125, P924
[6]   The quantitative analysis of drug-receptor interactions: a short history [J].
Colquhoun, D .
TRENDS IN PHARMACOLOGICAL SCIENCES, 2006, 27 (03) :149-157
[7]  
DELEAN A, 1980, J BIOL CHEM, V255, P7108
[8]   Identification of two distinct inactive conformations of the β2-adrenergic receptor reconciles structural and biochemical observations [J].
Dror, Ron O. ;
Arlow, Daniel H. ;
Borhani, David W. ;
Jensen, Morten O. ;
Piana, Stefano ;
Shaw, David E. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (12) :4689-4694
[9]  
EHLERT FJ, 1985, MOL PHARMACOL, V28, P410
[10]   Coot:: model-building tools for molecular graphics [J].
Emsley, P ;
Cowtan, K .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 :2126-2132