Reproducing kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative traits

被引:316
作者
Gianola, Daniel [1 ,2 ,3 ]
van Kaam, Johannes B. C. H. M. [4 ]
机构
[1] Univ Wisconsin, Dept Anim Sci, Madison, WI 53706 USA
[2] Norwegian Univ Life Sci, Dept Anim & Aquacultural Sci, N-1432 As, Norway
[3] Univ Palermo, I-90128 Palermo, Italy
[4] Ist Zooprofilattico Sperimentale Sicilia A Mirri, I-90129 Palermo, Italy
关键词
D O I
10.1534/genetics.107.084285
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Reproducing kernel Hilbert spaces regression procedures for prediction of total genetic value for quantitative traits, which make use of phenotypic and genomic data simultaneously, are discussed from a theoretical perspective. It is argued that a nonparametric treatment may be needed for capturing the multiple and complex interactions potentially arising in whole-genome models, i.e., those based on thousands of single-nucleotide polymorphism (SNP) markers. After a review of reproducing kernel Hilbert spaces regression, it is shown that the statistical specification admits a standard mixed-effects linear model representation, with smoothing parameters treated as variance components. Models for capturing different forms of interaction, e.g., chromosome-specific, are presented. Implementations can be carried out using software for likelihood-based or Bayesian inference.
引用
收藏
页码:2289 / 2303
页数:15
相关论文
共 58 条
[1]  
AITCHISON J, 1976, BIOMETRIKA, V63, P413, DOI 10.2307/2335719
[2]  
[Anonymous], 2005, INTRO NONPARAMETRIC
[3]   THEORY OF REPRODUCING KERNELS [J].
ARONSZAJN, N .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 68 (MAY) :337-404
[4]   A tutorial on statistical methods for population association studies [J].
Balding, David J. .
NATURE REVIEWS GENETICS, 2006, 7 (10) :781-791
[5]  
CHANG HLA, 1988, THESIS U ILLINOIS UR
[6]  
CHEVERUD JM, 1995, GENETICS, V139, P1455
[7]  
COCKERHAM CC, 1954, GENETICS, V39, P859
[8]  
Craven P., 1979, Numerische Mathematik, V31, P377, DOI 10.1007/BF01404567
[9]   The use of molecular genetics in the improvement of agricultural populations [J].
Dekkers, JCM ;
Hospital, F .
NATURE REVIEWS GENETICS, 2002, 3 (01) :22-32
[10]  
Elkan C., 1997, Boosting and Naive Bayesian learning