The considerable recent interest in the conversion of stranded methane into transportable liquids as well as fuel cell technology has provided a renewed impetus to the development of efficient processes for the generation of syngas. The production of syngas (CO/H2), a very versatile intermediate, can be the most expensive step in the conversion of methane to value-added liquid fuels. The catalytic oxy reforming of methane, which is an energy-efficient process that can produce syngas at extremely high space-time yields, is discussed in this Review. As long-term catalyst performance is crucial for the wide-scale commercialization of this process, catalyst-related studies are abundant. Correspondingly, herein, emphasis is placed on discussing the different issues related to the development of catalysts for oxy reforming. Important aspects of related processes such as catalytic oxy-steam, oxy-CO 2, and oxy-steam-CO2 processes will also be discussed. © 2008 Wiley-VCH Verlag GmbH & Co. KGaA.