Improved adaptive neuro-fuzzy inference system

被引:9
作者
Benmiloud, Tarek [1 ]
机构
[1] Oran, Oran, Algeria
关键词
Adaptive neuro-fuzzy inference system; Recurrent neural network; Static identification;
D O I
10.1007/s00521-011-0607-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a new type of Adaptive Neuro-fuzzy System, denoted as IANFIS (Improved Adaptive Neuro-fuszzy Inference System). The new structure is realized by the insertion of the error of training of ANFIS in the third layer of this system. The recurrence of the error of training will increase the capability of convergence and the robustness of ANFIS. The proposed IANFIS system is applied to make the identification of nonlinear functions, and the obtained results are compared with these obtained by usual ANFIS to verify the effectiveness of the proposed adaptive neuro-fuzzy system.
引用
收藏
页码:575 / 582
页数:8
相关论文
共 16 条
[1]  
[Anonymous], 2001, FUZZY NEURAL INTELLI
[2]  
[Anonymous], 1997, IEEE T AUTOM CONTROL, DOI DOI 10.1109/TAC.1997.633847
[3]  
Azeem MF, 2000, IEEE T NEURAL NETWOR, V11, P1332, DOI 10.1109/72.883438
[4]  
Bates D. M., 1988, Nonlinear regression analysis and its applications, V2
[5]  
Chandana S, 2007, INT J COMPUT INTELL, V3, P4
[6]  
De Franceschi ASM, 1999, IEEE INT C TEL JUL C
[7]   Simple and conditioned adaptive behavior from Kalman filter trained recurrent networks [J].
Feldkamp, LA ;
Prokhorov, DV ;
Feldkamp, TA .
NEURAL NETWORKS, 2003, 16 (5-6) :683-689
[8]   Hebbian learning and temporary storage in the convergence-zone model of episodic memory [J].
Howe, M ;
Miikkulainen, R .
NEUROCOMPUTING, 2000, 32 (32-33) :817-821
[9]  
Jain LC, 2004, INNOVATIONS INTELLIG
[10]   ANFIS - ADAPTIVE-NETWORK-BASED FUZZY INFERENCE SYSTEM [J].
JANG, JSR .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1993, 23 (03) :665-685