Spatial gradients and multidimensional dynamics in a neural integrator circuit

被引:93
作者
Miri, Andrew [1 ,2 ]
Daie, Kayvon [3 ,4 ,5 ]
Arrenberg, Aristides B. [6 ,7 ,8 ]
Baier, Herwig [6 ,7 ,8 ]
Aksay, Emre [3 ,4 ]
Tank, David W. [1 ,2 ]
机构
[1] Princeton Univ, Princeton Neurosci Inst, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Mol Biol, Princeton, NJ 08544 USA
[3] Weill Cornell Med Coll, Inst Computat Biomed, New York, NY USA
[4] Weill Cornell Med Coll, Dept Physiol & Biophys, New York, NY USA
[5] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA
[6] Univ Calif San Francisco, Dept Physiol, Program Neurosci, San Francisco, CA USA
[7] Univ Calif San Francisco, Dept Physiol, Genet Program, San Francisco, CA USA
[8] Univ Calif San Francisco, Dept Physiol, Program Dev Biol, San Francisco, CA USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
FRACTIONAL-ORDER DYNAMICS; EYE-POSITION; PERSISTENT ACTIVITY; VESTIBULOOCULAR REFLEX; OCULOMOTOR INTEGRATOR; PREPOSITUS-HYPOGLOSSI; TEMPORAL INTEGRATION; WORKING-MEMORY; MODEL NEURON; ALERT CAT;
D O I
10.1038/nn.2888
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In a neural integrator, the variability and topographical organization of neuronal firing-rate persistence can provide information about the circuit's functional architecture. We used optical recording to measure the time constant of decay of persistent firing (persistence time) across a population of neurons comprising the larval zebrafish oculomotor velocity-to-position neural integrator. We found extensive persistence time variation (tenfold; coefficients of variation = 0.58-1.20) across cells in individual larvae. We also found that the similarity in firing between two neurons decreased as the distance between them increased and that a gradient in persistence time was mapped along the rostrocaudal and dorsoventral axes. This topography is consistent with the emergence of persistence time heterogeneity from a circuit architecture in which nearby neurons are more strongly interconnected than distant ones. Integrator circuit models characterized by multiple dimensions of slow firing-rate dynamics can account for our results.
引用
收藏
页码:1150 / U207
页数:12
相关论文
共 50 条
[1]   Anatomy and discharge properties of pre-motor neurons in the goldfish medulla that have eye-position signals during fixations [J].
Aksay, E ;
Baker, R ;
Seung, HS ;
Tank, DW .
JOURNAL OF NEUROPHYSIOLOGY, 2000, 84 (02) :1035-1049
[2]  
Aksay E, 2003, J NEUROSCI, V23, P10852
[3]   History dependence of rate covariation between neurons during persistent activity in an oculomotor integrator [J].
Aksay, E ;
Major, G ;
Goldman, MS ;
Baker, R ;
Seung, HS ;
Tank, DW .
CEREBRAL CORTEX, 2003, 13 (11) :1173-1184
[4]   In vivo intracellular recording and perturbation of persistent activity in a neural integrator [J].
Aksay, E ;
Gamkrelidze, G ;
Seung, HS ;
Baker, R ;
Tank, DW .
NATURE NEUROSCIENCE, 2001, 4 (02) :184-193
[5]   Functional dissection of circuitry in a neural integrator [J].
Aksay, Emre ;
Olasagasti, Itsaso ;
Mensh, Brett D. ;
Baker, Robert ;
Goldman, Mark S. ;
Tank, David W. .
NATURE NEUROSCIENCE, 2007, 10 (04) :494-504
[6]   THE FRACTIONAL-ORDER DYNAMICS OF BRAIN-STEM VESTIBULOOCULOMOTOR NEURONS [J].
ANASTASIO, TJ .
BIOLOGICAL CYBERNETICS, 1994, 72 (01) :69-79
[7]   Nonuniformity in the linear network model of the oculomotor integrator produces approximately fractional-order dynamics and more realistic neuron behavior [J].
Anastasio, TJ .
BIOLOGICAL CYBERNETICS, 1998, 79 (05) :377-391
[8]   Optical control of zebrafish behavior with halorhodopsin [J].
Arrenberg, Aristides B. ;
Del Bene, Filippo ;
Baier, Herwig .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (42) :17968-17973
[9]   Precerebellar hindbrain neurons encoding eye velocity during vestibular and optokinetic behavior in the goldfish [J].
Beck, James C. ;
Rothnie, Paul ;
Straka, Hans ;
Wearne, Susan L. ;
Baker, Robert .
JOURNAL OF NEUROPHYSIOLOGY, 2006, 96 (03) :1370-1382
[10]   A PROPOSED NEURAL NETWORK FOR THE INTEGRATOR OF THE OCULOMOTOR SYSTEM [J].
CANNON, SC ;
ROBINSON, DA ;
SHAMMA, S .
BIOLOGICAL CYBERNETICS, 1983, 49 (02) :127-136