The regulatory T cell-associated transcription factor FoxP3 is expressed by tumor cells

被引:157
作者
Ebert, Lisa M. [1 ]
Tan, Bee Shin [1 ]
Browning, Judy [1 ,2 ]
Svobodova, Suzanne [1 ]
Russell, Sarah E. [1 ]
Kirkpatrick, Naomi [1 ]
Gedye, Craig [1 ]
Moss, Denis [3 ]
Ng, Sweet Ping [1 ,2 ]
MacGregor, Duncan [2 ]
Davis, Ian D. [1 ]
Cebon, Jonathan [1 ]
Chen, Weisan [1 ]
机构
[1] Ludwig Inst Canc Res, Melbourne Ctr Clin Sci, Heidelberg, Vic 3084, Australia
[2] Austin Hlth, Dept Pathol, Heidelberg, Vic, Australia
[3] Queensland Inst Med Res, Epstein Barr Virus Lab, Herston, Qld 4006, Australia
关键词
D O I
10.1158/0008-5472.CAN-07-5664
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
FoxP3 is a member of the forkhead family of transcription factors critically involved in the development and function of CD25(+) regulatory T cells (Treg). Until recently, Foxp3 expression was thought to be restricted to the T-cell lineage. However, using immunohistochemistry and flow cytometric analysis of human melanoma tissue, we detected FoxP3 expression not only in the tumor infiltrating Treg but also in the melanoma cells themselves. FoxP3 is also widely expressed by established human melanoma cell lines (as determined by flow cytometry, PCR, and Western blot), as well as cell lines derived from other solid tumors. Normal B cells do not express FoxP3; however, expression could be induced after transformation with EBV in vitro and in vivo, suggesting that malignant transformation of healthy cells can induce Foxp3. In addition, a FOXP3 mRNA variant lacking exons 3 and 4 was identified in tumor cell lines but was absent from Treg. Interestingly, this alternative splicing event introduces a translation frame-shift that is predicted to encode a novel protein. Together, our results show that FoxP3, a key regulator of immune suppression, is not only expressed by Treg but also by melanoma cells, EBV-transformed B cells, and a wide variety of tumor cell lines.
引用
收藏
页码:3001 / 3009
页数:9
相关论文
共 33 条
[1]   Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production [J].
Allan, Sarah E. ;
Crome, Sarah Q. ;
Crellin, Natasha K. ;
Passerini, Laura ;
Steiner, Theodore S. ;
Bacchetta, Rosa ;
Roncarolo, Maria G. ;
Levings, Megan K. .
INTERNATIONAL IMMUNOLOGY, 2007, 19 (04) :345-354
[2]   The role of 2 FOXP3 isoforms in the generation of human CD4+ Tregs [J].
Allan, SE ;
Passerini, L ;
Bacchetta, R ;
Crellin, N ;
Dai, MY ;
Orban, PC ;
Ziegler, SF ;
Roncarolo, MG ;
Levings, MK .
JOURNAL OF CLINICAL INVESTIGATION, 2005, 115 (11) :3276-3284
[3]   Defective regulatory and effector T cell functions in patients with FOXP3 mutations [J].
Bacchetta, Rosa ;
Passerini, Laura ;
Gambineri, Eleonora ;
Dai, Minyue ;
Allan, Sarah E. ;
Perroni, Lucia ;
Dagna-Bricarelli, Franca ;
Sartirana, Claudia ;
Matthes-Martins, Susanne ;
Lawitschka, Anita ;
Azzari, Chiara ;
Ziegler, Steven F. ;
Levings, Megan K. ;
Roncarolo, Maria Grazia .
JOURNAL OF CLINICAL INVESTIGATION, 2006, 116 (06) :1713-1722
[4]   DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3+ conventional T cells [J].
Baron, Udo ;
Floess, Stefan ;
Wieczorek, Georg ;
Baumann, Katrin ;
Gruetzkau, Andreas ;
Dong, Jun ;
Thiel, Andreas ;
Boeld, Tina J. ;
Hoffmann, Petra ;
Edinger, Matthias ;
Tuerbachova, Ivana ;
Hamann, Alf ;
Olek, Sven ;
Huehn, Jochen .
EUROPEAN JOURNAL OF IMMUNOLOGY, 2007, 37 (09) :2378-2389
[5]   Tumor antigen expression in melanoma varies according to antigen and stage [J].
Barrow, C ;
Browning, J ;
MacGregor, D ;
Davis, ID ;
Sturrock, S ;
Jungbluth, AA ;
Cebon, J .
CLINICAL CANCER RESEARCH, 2006, 12 (03) :764-771
[6]   The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3 [J].
Bennett, CL ;
Christie, J ;
Ramsdell, F ;
Brunkow, ME ;
Ferguson, PJ ;
Whitesell, L ;
Kelly, TE ;
Saulsbury, FT ;
Chance, PF ;
Ochs, HD .
NATURE GENETICS, 2001, 27 (01) :20-21
[7]   Regulatory T cells in cancer [J].
Beyer, Marc ;
Schultze, Joachim L. .
BLOOD, 2006, 108 (03) :804-811
[8]   Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse [J].
Brunkow, ME ;
Jeffery, EW ;
Hjerrild, KA ;
Paeper, B ;
Clark, LB ;
Yasayko, SA ;
Wilkinson, JE ;
Galas, D ;
Ziegler, SF ;
Ramsdell, F .
NATURE GENETICS, 2001, 27 (01) :68-73
[9]   Melan-A, a new melanocytic differentiation marker [J].
Busam, KJ ;
Jungbluth, AA .
ADVANCES IN ANATOMIC PATHOLOGY, 1999, 6 (01) :12-18
[10]   The Scurfy mutation of FoxP3 in the thymus stroma leads to defective thymopoiesis [J].
Chang, X ;
Gao, JX ;
Jiang, Q ;
Wen, J ;
Seifers, N ;
Su, LS ;
Godfrey, VL ;
Zuo, T ;
Zheng, P ;
Liu, Y .
JOURNAL OF EXPERIMENTAL MEDICINE, 2005, 202 (08) :1141-1151