Measurement of the interaction forces between proteins and iniferter-based graft-polymerized surfaces with an atomic force microscope in aqueous media

被引:47
作者
Kidoaki, S
Nakayama, Y
Matsuda, T [1 ]
机构
[1] Kyushu Univ, Dept Biomed Engn, Grad Sch Med, Higashi Ku, Fukuoka 8128582, Japan
[2] Natl Cardiovasc Ctr, Inst Res, Dept Bioengn, Suita, Osaka 5658565, Japan
关键词
D O I
10.1021/la000003p
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To investigate the characteristics of interaction forces between proteins and end-grafted polymer surfaces, force-versus-distance curves (f-d curves) were measured between protein-fixed probe tips (albumin (Alb) and lysozyme (Lyso)) and surfaces graft-polymerized with N,N-dimethylacrylamide (DMAAm) or acrylic acid (AAc) in an aqueous solution, using an atomic force microscope. DMAAm graft-polymerized surfaces with different chain lengths and AAc graft-polymerized surface were prepared by photopolymerization on a dithiocarbamate (iniferter)-immobilized surface. The effects of grafted chain length, grafting density, and electrostatic property of the grafted chain segments on the interaction forces in the processes of protein adsorption onto and desorption from the graft-polymerized surfaces were analyzed from the approaching and retracting traces of the observed f-d curves, respectively. (1) In the Alb/poly(DMAAm) system, steric repulsion was observed, in which the interaction range and the compressive force of the poly(DMAAm) layer linearly increased with increasing chain length of poly(DMAAm) except for very short chain lengths. Adhesion force was observed only for the poly(DMAAm) layer with short chains. (2) In the Alb/poly(AAc) system, repulsive force due to steric and electrostatic interactions, and "tooth-like" adhesion forces were observed. (3) In the Lyso/poly(AAc) system, electrostatic attraction and adhesion forces were observed. From observation 1, the grafting density, the elastic modulus of the poly(DMAAm) layer, and the conformation of the grafted chain ("mushroom" or "brush") were deduced and are discussed in relation to the characteristics of the interaction force with the proteins. From observations 2 and 3, it was found that a polyanionic surface can provide a significant adhesion force not only to positively charged proteins but also to negatively charged ones at physiological pH.
引用
收藏
页码:1080 / 1087
页数:8
相关论文
共 57 条
[1]   Detection of antigen-antibody binding events with the atomic force microscope [J].
Allen, S ;
Chen, XY ;
Davies, J ;
Davies, MC ;
Dawkes, AC ;
Edwards, JC ;
Roberts, CJ ;
Sefton, J ;
Tendler, SJB ;
Williams, PM .
BIOCHEMISTRY, 1997, 36 (24) :7457-7463
[2]   SURFACE MODIFICATION OF POLYMERIC BIOMATERIALS WITH POLY(ETHYLENE OXIDE), ALBUMIN, AND HEPARIN FOR REDUCED THROMBOGENICITY [J].
AMIJI, M ;
PARK, K .
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 1993, 4 (03) :217-234
[3]   PREVENTION OF PROTEIN ADSORPTION AND PLATELET-ADHESION ON SURFACES BY PEO PPO PEO TRIBLOCK COPOLYMERS [J].
AMIJI, M ;
PARK, K .
BIOMATERIALS, 1992, 13 (10) :682-692
[4]  
ANDRADE JD, 1985, SURFACE INTERFACIAL, V2, P1
[5]   Single polymer chain elongation by atomic force microscopy [J].
Bemis, JE ;
Akhremitchev, BB ;
Walker, GC .
LANGMUIR, 1999, 15 (08) :2799-2805
[6]   REDUCTION OF FIBRINOGEN ADSORPTION ON PEG-COATED POLYSTYRENE SURFACES [J].
BERGSTROM, K ;
HOLMBERG, K ;
SAFRANJ, A ;
HOFFMAN, AS ;
EDGELL, MJ ;
KOZLOWSKI, A ;
HOVANES, BA ;
HARRIS, JM .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 1992, 26 (06) :779-790
[7]   Recognition of protein adsorption onto polymer surfaces by scanning force microscopy and probe-surface adhesion measurements with protein-coated probes [J].
Chen, X ;
Davies, MC ;
Roberts, CJ ;
Tendler, SJB ;
Williams, PM ;
Davies, J ;
Dawkes, AC ;
Edwards, JC .
LANGMUIR, 1997, 13 (15) :4106-4111
[8]   BINDING STRENGTH BETWEEN CELL-ADHESION PROTEOGLYCANS MEASURED BY ATOMIC-FORCE MICROSCOPY [J].
DAMMER, U ;
POPESCU, O ;
WAGNER, P ;
ANSELMETTI, D ;
GUNTHERODT, HJ ;
MISEVIC, GN .
SCIENCE, 1995, 267 (5201) :1173-1175
[9]   Specific antigen/antibody interactions measured by force microscopy [J].
Dammer, U ;
Hegner, M ;
Anselmetti, D ;
Wagner, P ;
Dreier, M ;
Huber, W ;
Guntherodt, HJ .
BIOPHYSICAL JOURNAL, 1996, 70 (05) :2437-2441
[10]   CONFORMATIONS OF POLYMERS ATTACHED TO AN INTERFACE [J].
DEGENNES, PG .
MACROMOLECULES, 1980, 13 (05) :1069-1075