Gaussian version of a theorem of Milman and Schechtman

被引:10
作者
Guedon, O [1 ]
机构
[1] Univ Marne Vallee, F-93166 Noisy Le Grand, France
关键词
Banach space; Banach-Mazur distance; euclidean subspace; Gaussian processes;
D O I
10.1023/A:1009759010957
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using Gordon's inequalities, we give a short proof of the existence of an embedding T : l(2)(k) --> l(infinity)(n) such that \\T\\ \\T-1\\ less than or equal to root k/ln(1 +n/k). In same way, we give a new proof of a theorem of Milman and Schechtman (1995).
引用
收藏
页码:1 / 5
页数:5
相关论文
共 4 条
[1]   THE BANACH-MAZUR DISTANCE TO THE CUBE AND THE DVORETZKY-ROGERS FACTORIZATION [J].
BOURGAIN, J ;
SZAREK, SJ .
ISRAEL JOURNAL OF MATHEMATICS, 1988, 62 (02) :169-180
[2]   SOME INEQUALITIES FOR GAUSSIAN-PROCESSES AND APPLICATIONS [J].
GORDON, Y .
ISRAEL JOURNAL OF MATHEMATICS, 1985, 50 (04) :265-289
[3]  
MILMAN VD, 1995, CR ACAD SCI I-MATH, V321, P541
[4]  
MILMAN VD, IN PRESS ISOMORPHIC