An optimized interaction strategy for Bayesian relevance feedback

被引:33
作者
Cox, IJ [1 ]
Miller, ML [1 ]
Minka, TP [1 ]
Yianilos, PN [1 ]
机构
[1] NEC Res Inst, Princeton, NJ 08540 USA
来源
1998 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS | 1998年
关键词
D O I
10.1109/CVPR.1998.698660
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A new algorithm and systematic evaluation is presented for searching a database via relevance feedback. It represents a new image display strategy for the PicHunter system [2, 1]. The algorithm takes feedback in the form of relative judgments ("item A is more relevant than item B") as opposed to the stronger assumption of categorical relevance judgments ("item A is relevant but item B is not"). It also exploits a learned probabilistic model of human behavior to make better use of the feedback it obtains. The algorithm can be viewed as an extension of indexing schemes like the k-d tree to a stochastic setting, hence the name "stochastic-comparison search." In simulations, the amount of feedback required for the new algorithm scales like log(2) \D\, where \D\ is the size of the database, while a simple query-by-example approach scales like \D\(a), where a < 1 depends on the structure of the database. This theoretical advantage is reflected by experiments with real users on a database of 1500 stock photographs.
引用
收藏
页码:553 / 558
页数:6
相关论文
empty
未找到相关数据