More Accurate Estimation of Diffusion Tensor Parameters Using Diffusion Kurtosis Imaging

被引:208
作者
Veraart, Jelle [1 ]
Poot, Dirk H. J. [2 ]
Van Hecke, Wim [3 ,4 ]
Blockx, Ines [5 ]
Van der Linden, Annemie [5 ]
Verhoye, Marleen [5 ]
Sijbers, Jan
机构
[1] Univ Antwerp, Dept Phys, Visionlab, MS, B-2610 Antwerp, Belgium
[2] Erasmus MC, Biomed Imaging Grp Rotterdam, Rotterdam, Netherlands
[3] Univ Antwerp, Univ Antwerp Hosp, Dept Radiol, B-2020 Antwerp, Belgium
[4] Catholic Univ Louvain, Univ Hosp, Dept Radiol, Louvain, Belgium
[5] Univ Antwerp, Dept Biomed Sci, Bioimaging Lab, B-2020 Antwerp, Belgium
关键词
DKI; likelihood ratio test; b-value dependency; parameter estimation; GAUSSIAN WATER DIFFUSION; RICIAN DISTRIBUTION; MRI; BRAIN;
D O I
10.1002/mrm.22603
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
With diffusion tensor imaging, the diffusion of water molecules through brain structures is quantified by parameters, which are estimated assuming monoexponential diffusion-weighted signal attenuation. The estimated diffusion parameters, however, depend on the diffusion weighting strength, the b-value, which hampers the interpretation and comparison of various diffusion tensor imaging studies. In this study, a likelihood ratio test is used to show that the diffusion kurtosis imaging model provides a more accurate parameterization of both the Gaussian and non-Gaussian diffusion component compared with diffusion tensor imaging. As a result, the diffusion kurtosis imaging model provides a b-value-independent estimation of the widely used diffusion tensor parameters as demonstrated with diffusion-weighted rat data, which was acquired with eight different b-values, uniformly distributed in a range of [0,2800 sec/mm(2)]. In addition, the diffusion parameter values are significantly increased in comparison to the values estimated with the diffusion tensor imaging model in all major rat brain structures. As incorrectly assuming additive Gaussian noise on the diffusion-weighted data will result in an overestimated degree of non-Gaussian diffusion and a b-value-dependent underestimation of diffusivity measures, a Rician noise model was used in this study. Magn Reson Med 65:138-145, 2011. (c) 2010 Wiley-Liss, Inc.
引用
收藏
页码:138 / 145
页数:8
相关论文
共 37 条
[1]   Maximum a posteriori estimation of diffusion tensor parameters using a Rician noise model: Why, how and but [J].
Andersson, Jesper L. R. .
NEUROIMAGE, 2008, 42 (04) :1340-1356
[2]  
[Anonymous], P 18 ANN M INT SOC M
[3]  
[Anonymous], P 18 ANN M INT SOC M
[4]  
[Anonymous], 1993, ESIMATION THEORY
[5]  
[Anonymous], EXP NEUROL
[6]  
[Anonymous], 1998, FUNDEMENTALS STAT SI
[7]  
[Anonymous], P 18 ANN M INT SOC M
[8]   MR DIFFUSION TENSOR SPECTROSCOPY AND IMAGING [J].
BASSER, PJ ;
MATTIELLO, J ;
LEBIHAN, D .
BIOPHYSICAL JOURNAL, 1994, 66 (01) :259-267
[9]   DTI abnormalities in anterior corpus callosum of rats with spike-wave epilepsy [J].
Chahboune, H. ;
Mishra, A. M. ;
DeSalvo, M. N. ;
Staib, L. H. ;
Purcaro, M. ;
Scheinost, D. ;
Papademetris, X. ;
Fyson, S. J. ;
Lorincz, M. L. ;
Crunelli, V. ;
Hyder, F. ;
Blumenfeld, H. .
NEUROIMAGE, 2009, 47 (02) :459-466
[10]   Does diffusion kurtosis imaging lead to better neural tissue characterization? A rodent brain maturation study [J].
Cheung, Matthew M. ;
Hui, Edward S. ;
Chan, Kevin C. ;
Helpern, Joseph A. ;
Qi, Liqun ;
Wu, Ed X. .
NEUROIMAGE, 2009, 45 (02) :386-392