Astrocytes protect neurons from ethanol-induced oxidative stress and apoptotic death

被引:79
作者
Watts, LT
Rathinam, ML
Schenker, S
Henderson, GI
机构
[1] Univ Texas, Ctr Hlth Sci, Dept Pharmacol, San Antonio, TX 78285 USA
[2] Univ Texas, Ctr Hlth Sci, Dept Med, San Antonio, TX 78285 USA
关键词
oxidative stress; fetal alcohol syndrome; astrocytes; neurons; ethanol; apoptosis; coculture;
D O I
10.1002/jnr.20502
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Ethanol induces oxidative stress in cultured fetal rat cortical neurons and this is followed by apoptotic death, which can be prevented by normalization of cell content of reduced glutathione (GSH). Because astrocytes can play a central role in maintenance of neuron GSH homeostasis, the following experiments utilized cocultures of neonatal rat cortical astrocytes and fetal cortical neurons to determine if astrocytes could protect neurons from ethanol-mediated apoptotic death via this mechanism. In cortical neurons cultured in the absence of astrocytes, ethanol (2.5 and 4 mg/ml; 6-, 12-, and 24-hr exposures) decreased trypan blue exclusion and the MTT viability measures by up to 45% (P < 0.05), increased levels of reactive oxygen species (ROS) by up to 81% (P < 0.05), and decreased GSH within 1 hr of treatment by 49 and 51% for 2.5 and 4 mg/ml, respectively (P < 0.05). This was followed by onset of apoptotic cell death as determined by increased Annexin V binding and DNA fragmentation by 12 hr of ethanol exposure. Coculturing neurons with astrocytes prevented GSH depletion by 2.5 mg/ml ethanol, whereas GSH content was increased over controls in neurons exposed to 4 mg/ml ethanol (by up to 341%; P < 0.05). Ethanol generated increases in neuron ROS and apoptosis; decreases in viability were also prevented by coculture. Astrocytes were largely insensitive to ethanol, using the same measures. Only exposure to 4.0 mg/ml ethanol decreased GSH content in astrocytes, concomitant with a 204% increase in GSH efflux (P < 0.05). These studies illustrate that astrocytes can protect neurons from ethanol-mediated apoptotic death and that this may be related to maintenance of neuron GSH. (c) 2005 Wiley-Liss, Inc.
引用
收藏
页码:655 / 666
页数:12
相关论文
共 79 条
[1]   MATERNAL RISK-FACTORS IN FETAL-ALCOHOL-SYNDROME - PROVOCATIVE AND PERMISSIVE INFLUENCES [J].
ABEL, EL ;
HANNIGAN, JH .
NEUROTOXICOLOGY AND TERATOLOGY, 1995, 17 (04) :445-462
[2]  
Abel EL, 1998, FETAL ALCOHOL ABUSE
[3]   PRENATAL ETHANOL EXPOSURE PERMANENTLY REDUCES THE NUMBER OF PYRAMIDAL NEURONS IN RAT HIPPOCAMPUS [J].
BARNES, DE ;
WALKER, DW .
DEVELOPMENTAL BRAIN RESEARCH, 1981, 1 (03) :333-340
[4]   AGING, ENERGY, AND OXIDATIVE STRESS IN NEURODEGENERATIVE DISEASES [J].
BEAL, MF .
ANNALS OF NEUROLOGY, 1995, 38 (03) :357-366
[5]  
BEAVER JP, 1995, EUR J CELL BIOL, V68, P47
[6]   Nitric oxide-mediated mitochondrial damage: A potential neuroprotective role for glutathione [J].
Bolanos, JP ;
Heales, SJR ;
Peuchen, S ;
Barker, JE ;
Land, JM ;
Clark, JB .
FREE RADICAL BIOLOGY AND MEDICINE, 1996, 21 (07) :995-1001
[7]   ALCOHOL-INDUCED NEURONAL LOSS IN DEVELOPING RATS - INCREASED BRAIN-DAMAGE WITH BINGE EXPOSURE [J].
BONTHIUS, DJ ;
WEST, JR .
ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH, 1990, 14 (01) :107-118
[8]   BLOOD-ALCOHOL CONCENTRATION AND SEVERITY OF MICROENCEPHALY IN NEONATAL RATS DEPEND ON THE PATTERN OF ALCOHOL ADMINISTRATION [J].
BONTHIUS, DJ ;
GOODLETT, CR ;
WEST, JR .
ALCOHOL, 1988, 5 (03) :209-214
[9]   PERMANENT NEURONAL DEFICITS IN RATS EXPOSED TO ALCOHOL DURING THE BRAIN GROWTH SPURT [J].
BONTHIUS, DJ ;
WEST, JR .
TERATOLOGY, 1991, 44 (02) :147-163
[10]   OXIDATIVE STRESS AS A MEDIATOR OF APOPTOSIS [J].
BUTTKE, TM ;
SANDSTROM, PA .
IMMUNOLOGY TODAY, 1994, 15 (01) :7-10