Molecular signaling pathways regulating muscle proteolysis during atrophy

被引:73
作者
Franch, HA
Price, SR
机构
[1] Emory Univ, Renal Div, Atlanta, GA 30322 USA
[2] Atlanta Dept Vet Affairs Med Ctr, Res Serv, Decatur, GA USA
关键词
atrophy; insulin-like growth factor 1; proteasome; protein degradation; skeletal muscle; ubiquitin;
D O I
10.1097/01.mco.0000165005.01331.45
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Purpose of review Although a variety of diverse stimuli induce muscle atrophy, there is a surprising number of similarities in the intracellular responses. One prominent response is an increase in muscle proteolysis resulting from stimulation of the ubiquitin-proteasome pathway. Understanding the intracellular signaling pathways that regulate muscle mass should offer insights into the coordination of cellular responses. This review will discuss recent findings on the molecular signaling pathways regulating proteolysis during muscle atrophy. Recent findings The expression of several muscle-specific E3 ubiquitin ligases is consistently increased in conditions causing muscle atrophy. Insulin and insulin-like growth factor-1 act through the phosphoinositide 3-kinase/AKT pathway to suppress the expression of two of these enzymes, MuRF1 and MAFbx/atrogin-1. Efforts to identify targets of the muscle-specific E3 ligases are yielding interesting information. Insulin and insulin-like growth factor-1 also attenuate wasting by inhibiting caspase-3, which cleaves actin to facilitate its destruction by the ubiqutin-proteasome system. Other signaling systems involved in the regulation of muscle mass include the nuclear factor kappa B pathway. Summary The maintenance of muscle mass requires a delicate balance between catabolic factors and anabolic factors. These signals inversely modulate the activity of several key regulatory pathways including the phosphoinositide-3 kinase/AKT and nuclear factor kappa B systems, which control the transcription of components of the ubiquitin-proteasome proteolytic pathway activity, the activity of caspase-3, and perhaps other proteolytic functions. When levels of insulin or insulin-like growth factor-1 are insufficient or inflammatory cytokine production is increased, muscle atrophy ensues.
引用
收藏
页码:271 / 275
页数:5
相关论文
共 51 条
[1]   FoxOs at the crossroads of cellular metabolism, differentiation, and transformation [J].
Accili, D ;
Arden, KC .
CELL, 2004, 117 (04) :421-426
[2]   Cancer cachexia is regulated by selective targeting of skeletal muscle gene products [J].
Acharyya, S ;
Ladner, KJ ;
Nelsen, LL ;
Damrauer, J ;
Reiser, PJ ;
Swoap, S ;
Guttridge, DC .
JOURNAL OF CLINICAL INVESTIGATION, 2004, 114 (03) :370-378
[3]   Muscle ring finger protein-1 inhibits PKCε activation and prevents cardiomyocyte hypertrophy [J].
Arya, R ;
Kedar, V ;
Hwang, JR ;
McDonough, H ;
Li, HH ;
Taylor, J ;
Patterson, C .
JOURNAL OF CELL BIOLOGY, 2004, 167 (06) :1147-1159
[4]   Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo [J].
Bodine, SC ;
Stitt, TN ;
Gonzalez, M ;
Kline, WO ;
Stover, GL ;
Bauerlein, R ;
Zlotchenko, E ;
Scrimgeour, A ;
Lawrence, JC ;
Glass, DJ ;
Yancopoulos, GD .
NATURE CELL BIOLOGY, 2001, 3 (11) :1014-1019
[5]   Identification of ubiquitin ligases required for skeletal muscle atrophy [J].
Bodine, SC ;
Latres, E ;
Baumhueter, S ;
Lai, VKM ;
Nunez, L ;
Clarke, BA ;
Poueymirou, WT ;
Panaro, FJ ;
Na, EQ ;
Dharmarajan, K ;
Pan, ZQ ;
Valenzuela, DM ;
DeChiara, TM ;
Stitt, TN ;
Yancopoulos, GD ;
Glass, DJ .
SCIENCE, 2001, 294 (5547) :1704-1708
[6]   IKKβ/NF-κB activation causes severe muscle wasting in mice [J].
Cai, DS ;
Frantz, JD ;
Tawa, NE ;
Melendez, PA ;
Oh, BC ;
Lidov, HGW ;
Hasselgren, PO ;
Frontera, WR ;
Lee, J ;
Glass, DJ ;
Shoelson, SE .
CELL, 2004, 119 (02) :285-298
[7]   Regulation of components of the ubiquitin system by insulin-like growth factor I and growth hormone in skeletal muscle of rats made catabolic with dexamethasone [J].
Chrysis, D ;
Underwood, LE .
ENDOCRINOLOGY, 1999, 140 (12) :5635-5641
[8]   Role of the insulin-like growth factor I decline in the induction of atrogin-1/MAFbx during fasting and diabetes [J].
Dehoux, M ;
Van Beneden, R ;
Pasko, N ;
Lause, P ;
Verniers, J ;
Underwood, L ;
Ketelslegers, JM ;
Thissen, JP .
ENDOCRINOLOGY, 2004, 145 (11) :4806-4812
[9]   PI 3-kinase, Akt and cell survival [J].
Downward, J .
SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2004, 15 (02) :177-182
[10]   Glucocorticoids induce proteasome C3 subunit expression in L6 muscle cells by opposing the suppression of its transcription by NF-κB [J].
Du, J ;
Mitch, WE ;
Wang, XN ;
Price, SR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (26) :19661-19666