Combined effects of chronic ozone and elevated CO2 on Rubisco activity and leaf components in soybean (Glycine max)

被引:34
作者
Reid, CD
Fiscus, EL
Burkey, KO
机构
[1] N Carolina State Univ, Dept Crop Sci, Agr Res Serv, Raleigh, NC 27695 USA
[2] ARS, USDA, Raleigh, NC 27603 USA
[3] N Carolina State Univ, Dept Crop Sci, Raleigh, NC 27603 USA
关键词
O-3 x CO2 interaction; carbohydrate metabolism; Rubisco; sugars; non-structural carbohydrates;
D O I
10.1093/jexbot/49.329.1999
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Content and activity of Rubisco and concentrations of leaf nitrogen, chlorophyll and total non-structural carbohydrates (TNC) were determined at regular intervals during the 1993 and 1994 growing seasons to understand the effects and interactions of [O-3] and elevated [CO2] on biochemical limitations to photosynthesis during ontogeny. Soybean (Glycine max var. Essex) was grown in open-top field chambers in either charcoal-filtered air (CF, 20 nmol mol(-1)) or non-filtered air supplemented with 1.5 x ambient [O-3] (c. 80 nmol mol(-1)) at ambient (AA, 360 mu mol mol(-1)) or elevated [CO2] (700 pmol mol(-1)). Sampling period significantly affected all the variables examined. Changes included a decrease in the activity and content of Rubisco during seed maturation, and increased nitrogen (N), leaf mass per unit area (LMA) and total non-structural carbohydrates (TNC, including starch and sucrose) through the reproductive phases. Ontogenetic changes were most rapid in O-3-treated plants. At ambient [CO2], O-3 decreased initial activity (14-64% per unit leaf area and 14-29% per unit Rubisco) and content of Rubisco (9-53%), and N content per unit leaf area. Ozone decreased LMA by 17-28% of plants in CF-AA at the end of the growing season because of a 24-41% decrease in starch and a 59-80% decrease in sucrose. In general, elevated [CO2] in CF or O-3-fumigated air, reduced the initial activity of Rubisco and activation state while having little effect on Rubisco content, N and chlorophyll content, per unit leaf area. Elevated CO2 decreased Rubisco activity by 14-34% per unit leaf area and 15-25% per unit Rubisco content of plants in grown CF-AA, and increased LMA by 27-74% of the leaf mass per unit area in CF-AA because of a 23-148% increase in starch. However, the data suggest that, at elevated [CO2], increases in starch and sucrose are not directly responsible for the deactivation of Rubisco. Also, there was little evidence of an adjustment of Rubisco activity in response to starch and sucrose metabolism. Significant interactions between elevated [CO2] and [O-3] on all variables examined generally resulted in alleviation or amelioration of the O-3 effects at elevated CO2. These data provide further support to the idea that elevated atmospheric CO2 will reduce or prevent damage from pollutant O-3.
引用
收藏
页码:1999 / 2011
页数:13
相关论文
共 52 条
[1]   THE RELATIONSHIP BETWEEN CHANGES IN PHOTOSYNTHESIS AND GROWTH FOR RADISH PLANTS FUMIGATED WITH SO2 AND O-3 [J].
ATKINSON, CJ ;
ROBE, SV ;
WINNER, WE .
NEW PHYTOLOGIST, 1988, 110 (02) :173-184
[2]   INHIBITION OF PHOTOSYNTHESIS BY CARBOHYDRATES IN WHEAT LEAVES [J].
AZCONBIETO, J .
PLANT PHYSIOLOGY, 1983, 73 (03) :681-686
[3]   THE ANTIOXIDANT STATUS OF SOYBEAN (GLYCINE-MAX) LEAVES GROWN UNDER NATURAL CO2 ENRICHMENT IN THE FIELD [J].
BADIANI, M ;
D'ANNIBALE, A ;
PAOLACCI, AR ;
MIGLIETTA, F ;
RASCHI, A .
AUSTRALIAN JOURNAL OF PLANT PHYSIOLOGY, 1993, 20 (03) :275-284
[4]   PRODUCTION AND UTILIZATION OF ASSIMILATES IN WHEAT (TRITICUM-AESTIVUM L) LEAVES EXPOSED TO ELEVATED O-3 AND/OR CO2 [J].
BALAGUER, L ;
BARNES, JD ;
PANICUCCI, A ;
BORLAND, AM .
NEW PHYTOLOGIST, 1995, 129 (04) :557-568
[5]   Effects of elevated CO2, elevated O-3 and potassium deficiency on Norway spruce [Picea abies (L) Karst]: Seasonal changes in photosynthesis and non-structural carbohydrate content [J].
Barnes, JD ;
Pfirrmann, T ;
Steiner, K ;
Lutz, C ;
Busch, U ;
Kuchenhoff, H ;
Payer, HD .
PLANT CELL AND ENVIRONMENT, 1995, 18 (12) :1345-1357
[6]   EFFECTS OF ELEVATED CO2 AND/OR O-3 ON GROWTH, DEVELOPMENT AND PHYSIOLOGY OF WHEAT (TRITICUM-AESTIVUM L) [J].
BARNES, JD ;
OLLERENSHAW, JH ;
WHITFIELD, CP .
GLOBAL CHANGE BIOLOGY, 1995, 1 (02) :129-142
[7]   THE GREENHOUSE-EFFECT - ACCLIMATION OF TOMATO PLANTS GROWING IN HIGH CO2, PHOTOSYNTHESIS AND RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE PROTEIN [J].
BESFORD, RT ;
LUDWIG, LJ ;
WITHERS, AC .
JOURNAL OF EXPERIMENTAL BOTANY, 1990, 41 (229) :925-931
[8]   Photosynthesis and photorespiration in soybean [Glycine max (L.) Merr.] chronically exposed to elevated carbon dioxide and ozone [J].
Booker, FL ;
Reid, CD ;
BrunschonHarti, S ;
Fiscus, EL ;
Miller, JE .
JOURNAL OF EXPERIMENTAL BOTANY, 1997, 48 (315) :1843-1852
[9]   EFFECTS OF CO2 CONCENTRATION ON RUBISCO ACTIVITY, AMOUNT, AND PHOTOSYNTHESIS IN SOYBEAN LEAVES [J].
CAMPBELL, WJ ;
ALLEN, LH ;
BOWES, G .
PLANT PHYSIOLOGY, 1988, 88 (04) :1310-1316
[10]  
Collatz GJ, 1979, CARNEGIE I WASH YR B, V78, P171