Edge transport and turbulence reduction with lithium coated plasma facing components in the National Spherical Torus Experiment

被引:61
作者
Canik, J. M. [1 ]
Maingi, R. [1 ]
Kubota, S. [2 ]
Ren, Y. [3 ]
Bell, R. E. [3 ]
Callen, J. D. [4 ]
Guttenfelder, W. [3 ]
Kugel, H. W. [3 ]
LeBlanc, B. P. [3 ]
Osborne, T. H. [5 ]
Soukhanovskii, V. A. [6 ]
机构
[1] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[2] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
[3] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[4] Univ Wisconsin, Madison, WI 53706 USA
[5] Gen Atom Co, San Diego, CA 92186 USA
[6] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
关键词
DIII-D; CONFINEMENT; PHYSICS; PERFORMANCE; SHEAR; ITER;
D O I
10.1063/1.3592519
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The coating of plasma facing components (PFCs) with lithium improves energy confinement and eliminates ELMs in the National Spherical Torus Experiment, the latter due to a relaxation of the density and pressure profiles that reduces the drive for peeling-ballooning modes. 2-D interpretive transport modeling of discharges without and with lithium shows that a reduction in the PFC recycling coefficient from R similar to 0.98 to R similar to 0.90 is required to match the drop in D-alpha emission with lithium coatings. A broadening of the edge barrier region showing reduced transport coefficients is observed, with a similar to 75% drop of the D and chi(e) from 0.8 < psi(N) < 0.93 needed to match the profile relaxation with lithium coatings. Turbulence measurements using an edge reflectometry system as well as high-k microwave scattering show a decrease in density fluctuations with lithium coatings. These transport changes allow the realization of very wide pedestals, with a similar to 100% width increase relative to the reference discharges. (C) 2011 American Institute of Physics. [doi:10.1063/1.3592519]
引用
收藏
页数:12
相关论文
共 41 条
[1]   Plasma response to lithium-coated plasma-facing components in the National Spherical Torus Experiment [J].
Bell, M. G. ;
Kugel, H. W. ;
Kaita, R. ;
Zakharov, L. E. ;
Schneider, H. ;
LeBlanc, B. P. ;
Mansfield, D. ;
Bell, R. E. ;
Maingi, R. ;
Ding, S. ;
Kaye, S. M. ;
Paul, S. F. ;
Gerhardt, S. P. ;
Canik, J. M. ;
Hosea, J. C. ;
Taylor, G. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (12)
[2]   Radiative divertor modelling for ITER and TPX [J].
Braams, BJ .
CONTRIBUTIONS TO PLASMA PHYSICS, 1996, 36 (2-3) :276-281
[4]   Transport equations in tokamak plasmas [J].
Callen, J. D. ;
Hegna, C. C. ;
Cole, A. J. .
PHYSICS OF PLASMAS, 2010, 17 (05)
[5]   Analysis of pedestal plasma transport [J].
Callen, J. D. ;
Groebner, R. J. ;
Osborne, T. H. ;
Canik, J. M. ;
Owen, L. W. ;
Pankin, A. Y. ;
Rafiq, T. ;
Rognlien, T. D. ;
Stacey, W. M. .
NUCLEAR FUSION, 2010, 50 (06)
[6]   Most electron heat transport is not anomalous; It is a paleoclassical process in toroidal plasmas [J].
Callen, JD .
PHYSICAL REVIEW LETTERS, 2005, 94 (05)
[7]  
CALLEN JD, 2010, 106 UWCPTC, P84024
[8]  
CANIK JM, J NUCL MAT IN PRESS, P84024
[9]   SOLPS modelling of ASDEX upgrade H-mode plasma [J].
Chankin, A. V. ;
Coster, D. P. ;
Dux, R. ;
Fuchs, Ch ;
Haas, G. ;
Herrmann, A. ;
D Horton, L. ;
Kallenbach, A. ;
Kaufmann, M. ;
Konz, Ch ;
Lackner, K. ;
Maggi, C. ;
Mueller, H. W. ;
Neuhauser, J. ;
Pugno, R. ;
Reich, M. ;
Schneider, W. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2006, 48 (06) :839-868
[10]   Comparisons and physics basis of tokamak transport models and turbulence simulations [J].
Dimits, AM ;
Bateman, G ;
Beer, MA ;
Cohen, BI ;
Dorland, W ;
Hammett, GW ;
Kim, C ;
Kinsey, JE ;
Kotschenreuther, M ;
Kritz, AH ;
Lao, LL ;
Mandrekas, J ;
Nevins, WM ;
Parker, SE ;
Redd, AJ ;
Shumaker, DE ;
Sydora, R ;
Weiland, J .
PHYSICS OF PLASMAS, 2000, 7 (03) :969-983