Optimization of composite I-sections using fiber angles as design variables

被引:22
作者
Savic, V
Tuttle, ME
Zabinsky, ZB
机构
[1] Univ Washington, Dept Mech Engn, Seattle, WA 98195 USA
[2] Univ Washington, Dept Ind Engn, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0263-8223(01)00010-1
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A problem formulation and solution methodology for design optimization of laminated composite I-sections is presented. Objective functions and constraints are given in the form of beam stiffnesses. Two different objective functions are considered, maximum beam bending stiffness and maximum beam axial stiffness. Fiber directions in the beam walls are treated as design variables. It is assumed that the beam is constructed using unidirectional tape, and manufacturing issues associated with the use of unidirectional tape are discussed and included as constraints in the problem formulation and solution. The paper demonstrates that the design optimization of composite thin-walled beams is a complex global optimization problem that cannot be solved by means of traditional convex programming. Therefore, the solutions described are found using a global search algorithm., Improving Hit-and-Run, which allows the design variables to be either continuous or discrete with a user-specified discretization interval. Numerical results for two material systems and nine different design families for manufacturing composite I-sections are presented. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:265 / 277
页数:13
相关论文
共 34 条
[1]  
[Anonymous], 1945, J FRANKL I
[2]  
ARORA JS, 1997, ASCE MANUALS REPORTS
[3]   A PENALTY MODEL FOR THE ANALYSIS OF CURVED COMPOSITE BEAMS [J].
ASCIONE, L ;
FRATERNALI, F .
COMPUTERS & STRUCTURES, 1992, 45 (5-6) :985-999
[4]   DEFLECTION OF THIN-WALLED FIBER-REINFORCED COMPOSITE BEAMS [J].
BANK, LC ;
BEDNARCZYK, PJ .
JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 1990, 9 (02) :118-126
[5]   A VLASOV THEORY FOR FIBER-REINFORCED BEAMS WITH THIN-WALLED OPEN CROSS-SECTIONS [J].
BAULD, NR ;
TZENG, LS .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1984, 20 (03) :277-297
[6]   A GEOMETRICALLY NONLINEAR-THEORY FOR LAMINATED ANISOTROPIC THIN-WALLED-BEAMS [J].
BHASKAR, K ;
LIBRESCU, L .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1995, 33 (09) :1331-1344
[7]   BUCKLING UNDER AXIAL-COMPRESSION OF THIN-WALLED COMPOSITE BEAMS EXHIBITING EXTENSION-TWIST COUPLING [J].
BHASKAR, K ;
LIBRESCU, L .
COMPOSITE STRUCTURES, 1995, 31 (03) :203-212
[8]  
Boender C. G. E., 1995, HDB GLOBAL OPTIMIZAT, V2, P829
[9]  
BONANNI DL, 1988, VPEE8815
[10]   EXPERIMENTAL AND THEORETICAL-ANALYSIS OF COMPOSITE I-BEAMS WITH ELASTIC COUPLINGS [J].
CHANDRA, R ;
CHOPRA, I .
AIAA JOURNAL, 1991, 29 (12) :2197-2206