On the non-existence of Thas maximal arcs in odd order projective planes

被引:2
作者
Blokhuis, A
Hamilton, N
Wilbrink, H
机构
[1] Tech Univ Eindhoven, NL-5600 MB Eindhoven, Netherlands
[2] Vrije Univ Amsterdam, Wiskundig Seminarium, NL-1081 HV Amsterdam, Netherlands
[3] Univ Queensland, Dept Math, St Lucia, Qld 4072, Australia
关键词
D O I
10.1006/eujc.1997.0205
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper it is shown that given a non-degenerate elliptic quadric in the projective space PG(2n - 1, q), q odd, then there does not exist a spread of PG(2n - 1, q) such that each element of the spread meets the quadric in a maximal totally singular subspace. An immediate consequence is that the construction of [9] does not give maximal arcs in projective planes for q odd. It is also shown that the all one vector is not contained in the binary code spanned by the tangents to an elliptic quadric in PG(3, q), q odd. (C) 1998 Academic Press.
引用
收藏
页码:413 / 417
页数:5
相关论文
共 9 条
[1]  
ARTIN E, 1957, GEOMTRIC ALGEBRA
[2]   Maximal arcs in Desarguesian planes of odd order do not exist [J].
Ball, S ;
Blokhuis, A ;
Mazzocca, F .
COMBINATORICA, 1997, 17 (01) :31-41
[3]  
BALL S, IN PRESS P AM MATH S
[4]  
Denniston R. H. F., 1969, J. Combin. Theory, V6, P317, DOI DOI 10.1016/S0021-9800(69)80095-5
[5]   SOME INHERITED MAXIMAL ARCS IN DERIVED DUAL TRANSLATION-PLANES [J].
HAMILTON, N .
GEOMETRIAE DEDICATA, 1995, 55 (02) :165-173
[6]  
HAMILTON NA, 1995, THESIS U W AUSTR
[7]  
HIRSCHFELD JWP, 1991, GEN GALOIS GOMETRIES
[8]  
HIRSHFELD JWP, 1979, PROJECTIVE GEOMETRIE
[9]  
Thas J.A., 1980, European Journal of Combinatorics, V1, P189, DOI [10.1016/S0195-6698(80)80052-7, DOI 10.1016/S0195-6698(80)80052-7]