Nucleotide excision repair is not required for the antiapoptotic function of insulin-like growth factor 1

被引:5
作者
Lee-Kwon, W [1 ]
Park, D [1 ]
Bernier, M [1 ]
机构
[1] NIA, Diabet Sect, Clin Invest Lab, NIH, Baltimore, MD 21224 USA
关键词
D O I
10.1006/excr.1998.4087
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The expression of ERCC1, a member of the nucleotide excision repair (NER) family, is enhanced in cells transfected with insulin-like growth factor 1 (IGF-1) receptors. Of interest, an excellent concordance between ERCC1 expression and NER-mediated cell survival has been demonstrated. The two aims of the present study were to determine the signaling pathways used by IGF-1 to confer protection against apoptotic cell death in Chinese hamster ovary (CHO) cells and to assess the role of NER in this IGF-1 action. Experiments with pharmacological inhibitors indicated that phosphatidylinositol 3-kinase (PI 3-kinase) but not mitogen-activated protein kinase (ERK1/ERK2) mediates IGF-1 antiapoptotic activity. Using two series of CHO cells that have altered expression of ERCC1 or XPB/ERCC3, we examined IGF-1's ability to delay apoptotic death and reduction of mitochondrial oxidative function mediated by growth factor withdrawal. IGF-1 effectively blocked apoptosis, concomitant with increased MTT activity, in a pair of CHO cell lines expressing inactive ERCC1 (43-3B cells) and the transfected line of the mutant carrying the expressed human ERCC1 gene (83-G5 cells). Similarly, repair-deficient UV24 cells, which lack XPB/ERCC3, and their parental line AA8 were also responsive to the IGF-1's antiapoptotic capacity. In the presence of IGF-1, these cell lines became resistant to the cleavage of poly(ADP-ribose) polymerase, a key player in DNA damage recognition and DNA repair. These results suggest that PI 3-kinase activation plays a determinant role in the antiapoptotic function of IGF-1, but that functional NER does not play a critical part in mediating this IGF-1 response. (C) 1998 Academic Press.
引用
收藏
页码:458 / 466
页数:9
相关论文
共 64 条
[1]   MAMMALIAN DNA NUCLEOTIDE EXCISION-REPAIR RECONSTITUTED WITH PURIFIED PROTEIN-COMPONENTS [J].
ABOUSSEKHRA, A ;
BIGGERSTAFF, M ;
SHIVJI, MKK ;
VILPO, JA ;
MONCOLLIN, V ;
PODUST, VN ;
PROTIC, M ;
HUBSCHER, U ;
EGLY, JM ;
WOOD, RD .
CELL, 1995, 80 (06) :859-868
[2]   PD-098059 IS A SPECIFIC INHIBITOR OF THE ACTIVATION OF MITOGEN-ACTIVATED PROTEIN-KINASE KINASE IN-VITRO AND IN-VIVO [J].
ALESSI, DR ;
CUENDA, A ;
COHEN, P ;
DUDLEY, DT ;
SALTIEL, AR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (46) :27489-27494
[3]   Nucleotide excision repair genes as determinants of cellular sensitivity to cyclophosphamide analogs [J].
Andersson, BS ;
Sadeghi, T ;
Siciliano, MJ ;
Legerski, R ;
Murray, D .
CANCER CHEMOTHERAPY AND PHARMACOLOGY, 1996, 38 (05) :406-416
[4]   MAP2 KINASE AND 70K-S6 KINASE LIE ON DISTINCT SIGNALING PATHWAYS [J].
BALLOU, LM ;
LUTHER, H ;
THOMAS, G .
NATURE, 1991, 349 (6307) :348-350
[5]  
BIGGERSTAFF M, 1992, J BIOL CHEM, V267, P6879
[6]  
BILDIN VN, 1990, ACTA BIOL HUNG, V41, P51
[7]  
Boulikas T, 1996, ANTICANCER RES, V16, P225
[8]  
BRAMSON J, 1993, CANCER RES, V53, P3237
[9]   LARGE-SCALE ISOLATION OF UV-SENSITIVE CLONES OF CHO CELLS [J].
BUSCH, DB ;
CLEAVER, JE ;
GLASER, DA .
SOMATIC CELL GENETICS, 1980, 6 (03) :407-418
[10]   Apopain/CPP32 cleaves proteins that are essential for cellular repair: A fundamental principle of apoptotic death [J].
CasciolaRosen, L ;
Nicholson, DW ;
Chong, T ;
Rowan, KR ;
Thornberry, NA ;
Miller, DK ;
Rosen, A .
JOURNAL OF EXPERIMENTAL MEDICINE, 1996, 183 (05) :1957-1964