HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor

被引:967
作者
Kovacs, JJ
Murphy, PJM
Gaillard, S
Zhao, XA
Wu, JT
Nicchitta, CV
Yoshida, M
Toft, DO
Pratt, WB
Yao, TP [1 ]
机构
[1] Duke Univ, Dept Pharmacol & Canc Biol, Durham, NC 27710 USA
[2] Duke Univ, Dept Cell Biol, Durham, NC 27710 USA
[3] Univ Michigan, Sch Med, Dept Pharmacol, Ann Arbor, MI 48109 USA
[4] RIKEN, Chem Genet Lab, Wako, Saitama 3510198, Japan
[5] Mayo Clin & Mayo Fdn, Grad Sch, Dept Biochem & Mol Biol, Rochester, MN 55905 USA
关键词
D O I
10.1016/j.molcel.2005.04.021
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The molecular chaperone heat shock protein 90 (Hsp90) and its accessory cochaperones function by facilitating the structural maturation and complex assembly of client proteins, including steroid hormone receptors and selected kinases. By promoting the activity and stability of these signaling proteins, Hsp90 has emerged as a critical modulator in cell signaling. Here, we present evidence that Hsp90 chaperone activity is regulated by reversible acetylation and controlled by the deacetylase HDAC6. We show that HDAC6 functions as an Hsp90 deacetylase. Inactivation of HDAC6 leads to Hsp90 hyperacetylation, its dissociation from an essential cochaperone, p23, and a loss of chaperone activity. In HDAC6-deficient cells, Hsp90-dependent maturation of the glucocorticoid receptor (GR) is compromised, resulting in GR defective in ligand binding, nuclear translocation, and transcriptional activation. Our results identify Hsp90 as a target of HDAC6 and suggest reversible acetylation as a unique mechanism that regulates Hsp90 chaperone complex activity.
引用
收藏
页码:601 / 607
页数:7
相关论文
共 23 条
[1]  
CADEPOND F, 1991, J BIOL CHEM, V266, P5834
[2]  
COHEN T, 2004, SCI STKE, pPE42
[3]   Folding of the glucocorticoid receptor by the heat shock protein (hsp) 90-based chaperone machinery - The role of p23 is to stabilize receptor-hsp90 heterocomplexes formed by hsp90-p60-hsp70 [J].
Dittmar, KD ;
Demady, DR ;
Stancato, LF ;
Krishna, P ;
Pratt, WB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (34) :21213-21220
[4]   Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin [J].
Furumai, R ;
Komatsu, Y ;
Nishino, N ;
Khochbin, S ;
Yoshida, M ;
Horinouchi, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (01) :87-92
[5]   FUNCTIONAL DOMAINS OF THE HUMAN GLUCOCORTICOID RECEPTOR [J].
GIGUERE, V ;
HOLLENBERG, SM ;
ROSENFELD, MG ;
EVANS, RM .
CELL, 1986, 46 (05) :645-652
[6]   Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation [J].
Haggarty, SJ ;
Koeller, KM ;
Wong, JC ;
Grozinger, CM ;
Schreiber, SL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (08) :4389-4394
[7]   HDAC6 is a microtubule-associated deacetylase [J].
Hubbert, C ;
Guardiola, A ;
Shao, R ;
Kawaguchi, Y ;
Ito, A ;
Nixon, A ;
Yoshida, M ;
Wang, XF ;
Yao, TP .
NATURE, 2002, 417 (6887) :455-458
[8]  
JOHNSON JL, 1994, J BIOL CHEM, V269, P24989
[9]   A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors [J].
Kamal, A ;
Thao, L ;
Sensintaffar, J ;
Zhang, L ;
Boehm, MF ;
Fritz, LC ;
Burrows, FJ .
NATURE, 2003, 425 (6956) :407-410
[10]   The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress [J].
Kawaguchi, Y ;
Kovacs, JJ ;
McLaurin, A ;
Vance, JM ;
Ito, A ;
Yao, TP .
CELL, 2003, 115 (06) :727-738