Bounds for the multicovering radii of Reed-Muller codes with applications to stream ciphers

被引:4
作者
Honkala, I [1 ]
Klapper, A
机构
[1] Univ Turku, Dept Math, Turku 20014, Finland
[2] Univ Kentucky, Dept Comp Sci, Lexington, KY 40506 USA
基金
美国国家科学基金会;
关键词
error correcting code; stream cipher; covering radius; Reed-Muller code;
D O I
10.1023/A:1011291913974
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The multicovering radii of a code are recent generalizations of the covering radius of a code. For positive m, the m-covering radius of C is the least radius t such that every m-tuple of vectors is contained in at least one ball of radius t centered at some codeword. In this paper upper bounds are found for the multicovering radii of first order Reed-Muller codes. These bounds generalize the well-known Norse bounds for the classical covering radii of first order Reed-Muller codes. They are exact in some cases. These bounds are then used to prove the existence of secure families of keystreams against a general class of cryptanalytic attacks. This solves the open question that gave rise to the study of multicovering radii of codes.
引用
收藏
页码:131 / 145
页数:15
相关论文
共 12 条
[1]  
Balcazar J., 1988, STRUCTURAL COMPLEXIT, V1
[2]  
Cohen G, 1997, COVERING CODES
[3]   COVERING RADIUS - SURVEY AND RECENT RESULTS [J].
COHEN, GD ;
KARPOVSKY, MG ;
MATTSON, HF ;
SCHATZ, JR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1985, 31 (03) :328-343
[4]   ON THE COVERING RADIUS OF REED-MULLER CODES [J].
COHEN, GD ;
LITSYN, SN .
DISCRETE MATHEMATICS, 1992, 106 :147-155
[5]  
COHEN GD, 1994, 94D025 EC NAT SUP TE
[6]   COVERING RADIUS OF BINARY CODES [J].
HELLESETH, T ;
KLOVE, T ;
MYKKELTVEIT, J .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1978, 24 (05) :627-628
[7]   The multicovering radii of codes [J].
Klapper, A .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (04) :1372-1377
[8]   On the existence of secure keystream generators [J].
Klapper, A .
JOURNAL OF CRYPTOLOGY, 2001, 14 (01) :1-15
[9]  
KLAPPER A, 1995, LECT NOTES COMPUTER, V1070, P256
[10]  
Mac Williams F., 1977, THEORY ERROR CORRECT