Endoplasmic reticulum stress in the heart

被引:223
作者
Glembotski, Christopher C.
机构
[1] San Diego State Univ, Inst Heart, San Diego, CA 92182 USA
[2] San Diego State Univ, Dept Biol, San Diego, CA 92182 USA
关键词
ATF6; ER stress; ischemia; unfolded protein response; XBP1;
D O I
10.1161/CIRCRESAHA.107.161273
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Over the last decade, it has become clear that the accumulation of misfolded proteins contributes to a number of neurodegenerative, immune, and endocrine pathologies, as well as other age-related illnesses. Recent interest has focused on the possibility that the accumulation of misfolded proteins can also contribute to vascular and cardiac diseases. In large part, the misfolding of proteins takes place during synthesis on free ribosomes in the cytoplasm or on endoplasmic reticulum ribosomes. In fact, even under optimal conditions, approximate to 30% of all newly synthesized proteins are rapidly degraded, most likely because of improper folding. Accordingly, stresses that perturb the folding of proteins during or soon after synthesis can lead to the accumulation of misfolded proteins and to potential cellular dysfunction and pathological consequences. To avert such outcomes, cells have developed elaborate protein quality-control systems for detecting misfolded proteins and making appropriate adjustments to the machinery responsible for protein synthesis and/or degradation. Important contributors to protein quality control include cytosolic and organelle-targeted molecular chaperones, which help fold and stabilize proteins from unfolding, and the ubiquitin proteasome system, which degrades terminally misfolded proteins. Both of these systems play important roles in cardiovascular biology. The focus of this review is the endoplasmic reticulum stress response, a protein quality-control and signal-transduction system that has not been well studied in the context of cardiovascular biology but that could be important for vascular and cardiac health and disease.
引用
收藏
页码:975 / 984
页数:10
相关论文
共 109 条
[1]   XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks [J].
Acosta-Alvear, Diego ;
Zhou, Yiming ;
Blais, Alexandre ;
Tsikitis, Mary ;
Lents, Nathan H. ;
Arias, Carolina ;
Lennon, Christen J. ;
Kluger, Yuval ;
Dynlacht, Brian David .
MOLECULAR CELL, 2007, 27 (01) :53-66
[2]  
Adler HT, 1999, MOL CELL BIOL, V19, P7050
[3]   Endoplasmic reticulum stress and diabetes mellitus [J].
Araki, E ;
Oyadomari, S ;
Mori, M .
INTERNAL MEDICINE, 2003, 42 (01) :7-14
[4]   Activation of endoplasmic reticulum stress response during the development of ischemic heart disease [J].
Azfer, Asim ;
Niu, Jianli ;
Rogers, Linda M. ;
Adamski, Frances M. ;
Kolattukudy, Pappachan E. .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2006, 291 (03) :H1411-H1420
[5]  
Barnes JA, 1999, CELL STRESS CHAPERON, V4, P250, DOI 10.1379/1466-1268(1999)004<0250:EOGRPG>2.3.CO
[6]  
2
[7]   Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response [J].
Bertolotti, A ;
Zhang, YH ;
Hendershot, LM ;
Harding, HP ;
Ron, D .
NATURE CELL BIOLOGY, 2000, 2 (06) :326-332
[8]   ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth [J].
Bi, MX ;
Naczki, C ;
Koritzinsky, M ;
Fels, D ;
Blais, J ;
Hu, NP ;
Harding, H ;
Novoa, I ;
Varia, M ;
Raleigh, J ;
Scheuner, D ;
Kaufman, RJ ;
Bell, J ;
Ron, D ;
Wouters, BG ;
Koumenis, C .
EMBO JOURNAL, 2005, 24 (19) :3470-3481
[9]   Regulated expression of GRP78 during vasopressin induced hypertrophy of heart-derived myocytes [J].
Brostrom, MA ;
Mourad, F ;
Brostrom, C .
JOURNAL OF CELLULAR BIOCHEMISTRY, 2001, 83 (02) :204-217
[10]   HYPERHOMOCYSTEINEMIA - AN INDEPENDENT RISK FACTOR FOR VASCULAR-DISEASE [J].
CLARKE, R ;
DALY, L ;
ROBINSON, K ;
NAUGHTEN, E ;
CAHALANE, S ;
FOWLER, B ;
GRAHAM, I .
NEW ENGLAND JOURNAL OF MEDICINE, 1991, 324 (17) :1149-1155