A review of shear wave splitting in the crack-critical crust

被引:170
作者
Crampin, S
Chastin, S
机构
[1] Univ Edinburgh, Dept Geol & Geophys, Shear Wave Anal Grp, Edinburgh EH9 3JW, Midlothian, Scotland
[2] British Geol Survey, Edinburgh Anisotropy Project, Edinburgh EH9 3LA, Midlothian, Scotland
关键词
anisotropy; compliance; crack-critical crust; fracture criticality; shear wave splitting;
D O I
10.1046/j.1365-246X.2003.02037.x
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Over the last 15 years, it has become established that crack-induced stress-aligned shear wave splitting, with azimuthal anisotropy, is an inherent characteristic of almost all rocks in the crust. This means that most in situ rocks are pervaded by fluid-saturated microcracks and consequently are highly compliant. The evolution of such stress-aligned fluid-saturated grain-boundary cracks and pore throats in response to changing conditions can be calculated, in some cases with great accuracy, using anisotropic poro-elasticity (APE). APE is tightly constrained with no free parameters, yet dynamic modelling with APE currently matches a wide range of phenomena concerning anisotropy, stress, shear waves and cracks. In particular, APE has allowed the anisotropic response of a reservoir to injection to be calculated (predicted with hindsight), and the time and magnitude of an earthquake to be correctly stress-forecast. The reason for this calculability and predictability is that the microcracks in the crust are so closely spaced that they form critical systems. This crack-critical crust leads to a new style of geophysics that has profound implications for almost all aspects of pre-fracturing deformation of the crust and for solid-earth geophysics and geology. We review past, present and speculate about the future of shear wave splitting in the crack-critical crust. Shear wave splitting is seen to be a dynamic measure of the deformation of the rock mass. There is some good news and some bad news for conventional geophysics. Many accepted phenomena are no longer valid at high spatial and temporal resolution. A major effect is that the detailed crack geometry changes with time and varies from place to place in response to very small previously negligible changes. However, at least in some circumstances, the behaviour of the rock in the highly complex inhomogeneous Earth may be calculated and the response predicted, opening the way to possible control by feedback. The need is to devise ways to exploit these new opportunities in the crack-critical crust. Recent observations from the SMSITES Project at Husavik in Northern Iceland, gathered while this review was being written, display the extraordinarily sensitivity of in situ rock to small changes at great distances. The effects are far too large to occur in a conventional elastic brittle crust, and their presence confirms the highly compliant nature of the crack-critical crust.
引用
收藏
页码:221 / 240
页数:20
相关论文
共 106 条
[1]  
Alford R.M., 1986, 56th Annual International Meeting, Society of Exploration Geophysicists, P476, DOI DOI 10.1190/1.1893036
[2]   Processing, modelling and predicting time-lapse effects of overpressured fluid-injection in a fractured reservoir [J].
Angerer, E ;
Crampin, S ;
Li, XY ;
Davis, TL .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2002, 149 (02) :267-280
[3]  
[Anonymous], 70 SEG ANN INT M EXH
[4]  
[Anonymous], 1993, CANADIAN J EXPLORATI
[5]  
[Anonymous], 2000, SEG TECHN PROGR EXP
[6]  
[Anonymous], 70 ANN INT M SOC EXP
[7]   EARTHQUAKES AS A SELF-ORGANIZED CRITICAL PHENOMENON [J].
BAK, P ;
TANG, C .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1989, 94 (B11) :15635-15637
[8]   SELF-ORGANIZED CRITICALITY [J].
BAK, P ;
TANG, C ;
WIESENFELD, K .
PHYSICAL REVIEW A, 1988, 38 (01) :364-374
[9]   SELF-ORGANIZED CRITICALITY - AN EXPLANATION OF 1/F NOISE [J].
BAK, P ;
TANG, C ;
WIESENFELD, K .
PHYSICAL REVIEW LETTERS, 1987, 59 (04) :381-384
[10]  
BAK P, 1996, HOW NATURE WORKS