Stochastic convexity in dynamic programming

被引:7
作者
Atakan, AE [1 ]
机构
[1] Columbia Univ, Dept Econ, New York, NY 10027 USA
关键词
dynamic programming; stochastic dominance; concave value function; differentiable value function;
D O I
10.1007/s00199-002-0307-6
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper explores sufficient conditions for a continuous stationary Markov optimal policy and a concave value function in stochastic dynamic programming problems. Also, the paper addresses conditions needed for the differentiability of the value function. The paper uses conditions such as first order stochastic dominance, second order stochastic dominance and concave stochastic dominance that are widely applied in economics.
引用
收藏
页码:447 / 455
页数:9
相关论文
共 12 条
[1]   A new look at optimal growth under uncertainty [J].
Amir, R .
JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 1997, 22 (01) :67-86
[2]  
[Anonymous], ECONOMETRICA
[3]  
[Anonymous], ANN MATH STAT, DOI DOI 10.1214/AOMS/1177700285
[4]  
[Anonymous], 1999, Pure and Applied Mathematics (New York)
[5]   SEARCH, LAYOFFS, AND LABOR-MARKET EQUILIBRIUM [J].
BURDETT, K ;
MORTENSEN, DT .
JOURNAL OF POLITICAL ECONOMY, 1980, 88 (04) :652-672
[6]   PARAMETRIC CONTINUITY IN DYNAMIC-PROGRAMMING PROBLEMS [J].
DUTTA, PK ;
MAJUMDAR, MK ;
SUNDARAM, RK .
JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 1994, 18 (06) :1069-1092
[7]   MARKOVIAN DECISION PROCESSES WITH COMPACT ACTION SPACES [J].
FURUKAWA, N .
ANNALS OF MATHEMATICAL STATISTICS, 1972, 43 (05) :1612-&
[8]  
Maitra A., 1968, SANKHYA A, V30-A, P211
[9]   INCREASING RISK .1. DEFINITION [J].
ROTHSCHILD, M ;
STIGLITZ, JE .
JOURNAL OF ECONOMIC THEORY, 1970, 2 (03) :225-243
[10]   INCREASING RISK .2. ITS ECONOMIC CONSEQUENCES [J].
ROTHSCHILD, M ;
STIGLITZ, JE .
JOURNAL OF ECONOMIC THEORY, 1971, 3 (01) :66-84