Inorganic polyphosphate stimulates mammalian TOR, a kinase involved in the proliferation of mammary cancer cells

被引:159
作者
Wang, LH
Fraley, CD
Faridi, J
Kornberg, A
Roth, RA
机构
[1] Stanford Univ, Dept Mol Pharmacol, CCSR, Sch Med, Stanford, CA 94305 USA
[2] Stanford Univ, Sch Med, Dept Biochem, Stanford, CA 94305 USA
关键词
D O I
10.1073/pnas.1534805100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Inorganic polyphosphate (poly P), chains of hundreds of phosphate residues linked by "high-energy" bonds as in ATP, has been conserved from prebiotic times in all cells. Poly P is essential for a wide variety of functions in bacteria, including virulence in pathogen;. In this study, we observe the unique and many-fold stimulatic by poly P in vitro of the protein kinase mTOR (mammalian target of rapamycin). To explore the role of poly P in mammalian cells, a yeast polyphosphatase, PPX1, was inserted into the chromosomes of MCF-7 mammary cancer cells. The transfected cells are markedly deficient in their response to mitogens, such as insulin and amino acids, as seen in their failure to activate mTOR to phosphorylate one of its substrates, PHAS-I (the initiation factor 4E-binding protein). In addition, the transfected cells are severely reduced in their growth in a serum-free medium. On the basis of these findings, we suggest that poly P (and/or PPX1) serves as a regulatory factor in the activation of mTOR in the proliferative signaling pathways of animal cells.
引用
收藏
页码:11249 / 11254
页数:6
相关论文
共 34 条
[1]   A novel family of predicted phosphoesterases includes Drosophila prune protein and bacterial RecJ exonuclease [J].
Aravind, L ;
Koonin, EV .
TRENDS IN BIOCHEMICAL SCIENCES, 1998, 23 (01) :17-19
[2]  
Ault-Riché D, 1998, J BACTERIOL, V180, P1841
[3]   A MAMMALIAN PROTEIN TARGETED BY G1-ARRESTING RAPAMYCIN-RECEPTOR COMPLEX [J].
BROWN, EJ ;
ALBERS, MW ;
SHIN, TB ;
ICHIKAWA, K ;
KEITH, CT ;
LANE, WS ;
SCHREIBER, SL .
NATURE, 1994, 369 (6483) :756-758
[4]   Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin [J].
Brunn, GJ ;
Hudson, CC ;
Sekulic, A ;
Williams, JM ;
Hosoi, H ;
Houghton, PJ ;
Lawrence, JC ;
Abraham, RT .
SCIENCE, 1997, 277 (5322) :99-101
[5]   Synapsis of DNA ends by DNA-dependent protein kinase [J].
DeFazio, LG ;
Stansel, RM ;
Griffith, JD ;
Chu, G .
EMBO JOURNAL, 2002, 21 (12) :3192-3200
[6]   Mammalian TOR: A homeostatic ATP sensor [J].
Dennis, PB ;
Jaeschke, A ;
Saitoh, M ;
Fowler, B ;
Kozma, SC ;
Thomas, G .
SCIENCE, 2001, 294 (5544) :1102-1105
[7]   REPLACEMENT OF INSULIN-RECEPTOR TYROSINE RESIDUES 1162 AND 1163 COMPROMISES INSULIN-STIMULATED KINASE-ACTIVITY AND UPTAKE OF 2-DEOXYGLUCOSE [J].
ELLIS, L ;
CLAUSER, E ;
MORGAN, DO ;
EDERY, M ;
ROTH, RA ;
RUTTER, WJ .
CELL, 1986, 45 (05) :721-732
[8]   Phosphatidic acid-mediated mitogenic activation of mTOR signaling [J].
Fang, YM ;
Vilella-Bach, M ;
Bachmann, R ;
Flanigan, A ;
Chen, J .
SCIENCE, 2001, 294 (5548) :1942-1945
[9]   Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E [J].
Fingar, DC ;
Salama, S ;
Tsou, C ;
Harlow, E ;
Blenis, J .
GENES & DEVELOPMENT, 2002, 16 (12) :1472-1487
[10]   Amplification and overexpression of PRUNE in human sarcomas and breast carcinomas -: a possible mechanism for altering the nm23-H1 activity [J].
Forus, A ;
D'Angelo, A ;
Henriksen, J ;
Merla, G ;
Maelandsmo, GM ;
Florenes, VA ;
Olivieri, S ;
Bjerkehagen, B ;
Meza-Zepeda, LA ;
Blanco, FD ;
Müller, C ;
Sanvito, F ;
Kononen, J ;
Nesland, JM ;
Fodstad, O ;
Reymond, A ;
Kallioniemi, OP ;
Arrigoni, G ;
Ballabio, A ;
Myklebost, O ;
Zollo, M .
ONCOGENE, 2001, 20 (47) :6881-6890