Specialized elements of orbitofrontal cortex in primates

被引:95
作者
Barbas, Helen [1 ]
机构
[1] Boston Univ, Dept Hlth Sci, Program Neurosci, Boston, MA 02215 USA
来源
LINKING AFFECT TO ACTION: CRITICAL CONTRIBUTIONS OF THE ORBITOFRONTAL CORTEX | 2007年 / 1121卷
关键词
orbitofroutal connections; laminar patterns of connections; emotions; inhibitory systems; sequential pathways; emotional memory; temporal structures; intercalated amygdalar neurons; anxiety disorders;
D O I
10.1196/annals.1401.015
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
The orbitofrontal cortex is associated with encoding the significance of stimuli within an emotional context, and its connections can be understood in this light. This large cortical region is architectonically heterogeneous, but its connections and functions can be summarized by a broad grouping of areas by cortical type into posterior and anterior sectors. The posterior (limbic) orbitofrontal region is composed of agranular and dysgranular-type cortices and has unique connections with primary olfactory areas and rich connections with high-order sensory association cortices. Posterior orbitofrontal areas are further distinguished by dense and distinct patterns of connections with the amygdala and memory-related anterior temporal lobe structures that may convey signals about emotional import and their memory. The special sets of connections suggest that the posterior orbitofrontal cortex is the primary region for the perception of emotions. In contrast to orbitofrontal areas, posterior medial prefrontal areas in the anterior cingulate are not multi-modal, but have strong connections with auditory association cortices, brain stem vocalization, and autonomic structures, in pathways that may mediate emotional communication and autonomic activation in emotional arousal. Posterior orbitofrontal areas communicate with anterior orbitofrontal areas and, through feedback projections, with lateral prefrontal and other cortices, suggesting a sequence of information processing for emotions. Pathology in orbitofrontal cortex may remove feedback input to sensory cortices, dissociating emotional context from sensory content and impairing the ability to interpret events.
引用
收藏
页码:10 / 32
页数:23
相关论文
共 122 条
[1]   CORTICAL AND SUB-CORTICAL AFFERENTS TO THE AMYGDALA OF THE RHESUS-MONKEY (MACACA-MULATTA) [J].
AGGLETON, JP ;
BURTON, MJ ;
PASSINGHAM, RE .
BRAIN RESEARCH, 1980, 190 (02) :347-368
[2]  
Alheid GF, 1996, PROG BRAIN RES, V107, P461
[3]   AMYGDALO-CORTICAL PROJECTIONS IN THE MONKEY (MACACA-FASCICULARIS) [J].
AMARAL, DG ;
PRICE, JL .
JOURNAL OF COMPARATIVE NEUROLOGY, 1984, 230 (04) :465-496
[4]  
[Anonymous], FUNCTIONAL NEUROSURG
[5]   A cortical mechanism for triggering top-down facilitation in visual object recognition [J].
Bar, M .
JOURNAL OF COGNITIVE NEUROSCIENCE, 2003, 15 (04) :600-609
[6]   DIVERSE THALAMIC PROJECTIONS TO THE PREFRONTAL CORTEX IN THE RHESUS-MONKEY [J].
BARBAS, H ;
HENION, THH ;
DERMON, CR .
JOURNAL OF COMPARATIVE NEUROLOGY, 1991, 313 (01) :65-94
[7]  
Barbas H, 1999, J COMP NEUROL, V410, P343, DOI 10.1002/(SICI)1096-9861(19990802)410:3<343::AID-CNE1>3.0.CO
[8]  
2-1
[9]   ARCHITECTURE AND INTRINSIC CONNECTIONS OF THE PREFRONTAL CORTEX IN THE RHESUS-MONKEY [J].
BARBAS, H ;
PANDYA, DN .
JOURNAL OF COMPARATIVE NEUROLOGY, 1989, 286 (03) :353-375
[10]   Topographically specific hippocampal projections target functionally distinct prefrontal areas in the rhesus monkey [J].
Barbas, H ;
Blatt, GJ .
HIPPOCAMPUS, 1995, 5 (06) :511-533