Identification of 30 kDa calsequestrin-binding protein, which regulates calcium release from sarcoplasmic reticulum of rabbit skeletal muscle

被引:14
作者
Yamaguchi, N [1 ]
Kasai, M [1 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, Div Biophys Engn, Toyonaka, Osaka 5608531, Japan
关键词
D O I
10.1042/bj3350541
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In a previous study [Yamaguchi, Kawasaki and Kasai (1995) Biochem. Biophys. Res. Commun. 210, 648-653], we showed that the stilbene derivative 4,4'-di-isothiocyanostilbene-2,2'-disulphonic acid activates the Ca2+ channel in the sarcoplasmic reticulum (SR) in rabbit skeletal muscle, and it does not bind to the channel protein itself but to the SR 30 kDa protein. Furthermore, the 30 kDa protein was shown to bind to calsequestrin (CSQ), which is one of the regulators of the Calf release channel in the SR. In the present study, we determined the partial amino acid sequence of the CSQ-binding 30 kDa protein and, consequently, this protein was proved to be highly similar to ADP/ATP translocase (AAT) expressed in the mitochondria in a variety of cells. By Western-blotting analysis, the CSQ-binding 30 kDa protein was recognized by the antibody raised against bovine cardiac AAT and, furthermore, depolarization-induced Ca2+ release monitored in the rabbit skeletal muscle triads was significantly activated by the antibody. As a result of cloning and sequencing of the cDNA encoding AAT of the rabbit skeletal muscle, the amino acid sequence was found to be the same as that of the CSQ-binding 30 kDa protein determined above. Furthermore, the expressed product of the cDNA encoding AAT in Escherichia coli was proved to bind to CSQ. These results suggest that AAT itself is expressed in the rabbit skeletal muscle SR and regulates the Ca2+ release from the SR; that is, excitation-contraction coupling of the skeletal muscle cell.
引用
收藏
页码:541 / 547
页数:7
相关论文
共 40 条
[1]   CHEMICAL, IMMUNOLOGICAL, ENZYMATIC, AND GENETIC APPROACHES TO STUDYING THE ARRANGEMENT OF THE PEPTIDE-CHAIN OF THE ADP/ATP CARRIER IN THE MITOCHONDRIAL-MEMBRANE [J].
BRANDOLIN, G ;
LESAUX, A ;
TREZEGUET, V ;
LAUQUIN, GJM ;
VIGNAIS, PV .
JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 1993, 25 (05) :459-472
[2]   MOLECULAR-INTERACTIONS OF THE JUNCTIONAL FOOT PROTEIN AND DIHYDROPYRIDINE RECEPTOR IN SKELETAL-MUSCLE TRIADS [J].
BRANDT, NR ;
CASWELL, AH ;
WEN, SR ;
TALVENHEIMO, JA .
JOURNAL OF MEMBRANE BIOLOGY, 1990, 113 (03) :237-251
[3]   STABILIZATION OF CALCIUM-RELEASE CHANNEL (RYANODINE RECEPTOR) FUNCTION BY FK506-BINDING PROTEIN [J].
BRILLANTES, AMB ;
ONDRIAS, K ;
SCOTT, A ;
KOBRINSKY, E ;
ONDRIASOVA, E ;
MOSCHELLA, MC ;
JAYARAMAN, T ;
LANDERS, M ;
EHRLICH, BE ;
MARKS, AR .
CELL, 1994, 77 (04) :513-523
[4]   LOCALIZATION AND PARTIAL CHARACTERIZATION OF THE OLIGOMERIC DISULFIDE-LINKED MOLECULAR-WEIGHT 95000 PROTEIN (TRIADIN) WHICH BINDS THE RYANODINE AND DIHYDROPYRIDINE RECEPTORS IN SKELETAL-MUSCLE TRIADIC VESICLES [J].
CASWELL, AH ;
BRANDT, NR ;
BRUNSCHWIG, JP ;
PURKERSON, S .
BIOCHEMISTRY, 1991, 30 (30) :7507-7513
[5]  
CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P156, DOI 10.1016/0003-2697(87)90021-2
[6]  
COSTELLO B, 1988, METHOD ENZYMOL, V157, P46
[7]   SPECIFIC PROTEIN-PROTEIN INTERACTIONS OF CALSEQUESTRIN WITH JUNCTIONAL SARCOPLASMIC-RETICULUM OF SKELETAL-MUSCLE [J].
DAMIANI, E ;
MARGRETH, A .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1990, 172 (03) :1253-1259
[8]   LUMINAL CALCIUM REGULATES CALCIUM-RELEASE IN TRIADS ISOLATED FROM FROG AND RABBIT SKELETAL-MUSCLE [J].
DONOSO, P ;
PRIETO, H ;
HIDALGO, C .
BIOPHYSICAL JOURNAL, 1995, 68 (02) :507-515
[9]  
Ernster L., 1967, METHOD ENZYMOL, V10, P86
[10]   DISULFIDE BONDS, N-GLYCOSYLATION AND TRANSMEMBRANE TOPOLOGY OF SKELETAL-MUSCLE TRIADIN [J].
FAN, HR ;
BRANDT, NR ;
CASWELL, AH .
BIOCHEMISTRY, 1995, 34 (45) :14902-14908