Single electron reduction of cytochrome c oxidase compound F:: Resolution of partial steps by transient spectroscopy

被引:65
作者
Zaslavsky, D
Sadoski, RC
Wang, KF
Durham, B
Gennis, RB
Millett, F [1 ]
机构
[1] Univ Arkansas, Dept Chem & Biochem, Fayetteville, AR 72701 USA
[2] Univ Illinois, Sch Chem Sci, Urbana, IL 61801 USA
关键词
D O I
10.1021/bi981490z
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The final step of the catalytic cycle of cytochrome oxide, the reduction of oxyferryl heme a(3) in compound F, was investigated using a binuclear polypyridine ruthenium complex (Ru2C) as a photoactive reducing agent. The net charge of +4 on Ru2C allows it to bind electrostatically near Cu-A in subunit II of cytochrome oxidase. Photoexcitation of Ru2C with a laser flash results in formation of a metal-to-ligand charge-transfer excited state, Ru2C*, which rapidly transfers an electron to Cu-A of cytochrome oxidase from either beef heart or Rhodobacter sphaeroides. This is followed by reversible electron transfer from CuA to heme a with forward and reverse rate constants of k(1) = 9.3 x 10(4) s(-1) and k(-1) = 1.7 x 10(4) s(-1) for R. sphaeroides cytochrome oxidase in the resting state. Compound F was prepared by treating the resting enzyme with excess hydrogen peroxide. The value of the rate constant k(1) is the same in compound F where heme a(3) is in the oxyferryl form as in the resting enzyme where heme a(3) is ferric. Reduction of heme a in compound F is followed by electron transfer from heme a to oxyferryl heme a(3) with a rate constant of 700 s(-1), as indicated by transients at 605 and 580 nm. No delay between heme a reoxidation and oxyferryl heme a(3) reduction is observed, showing that no electron-transfer intermediates, such as reduced Cu-B, accumulate in this process. The rate constant for electron transfer from heme a to oxyferryl heme a(3) was measured in beef cytochrome oxidase from pH 7.0 to pH 9.5, and found to decrease upon titration of a group with a pK(a) of 9.0. The rate constant is slower in D2O than in H2O by a factor of 4.3, indicating that the electron-transfer reaction is rate-limited by a proton-transfer step. The pH dependence and deuterium isotope effect for reduction of isolated compound F are comparable to that observed during reaction of the reduced, CO-inhibited CcO with oxygen by the flow-flash technique. This result indicates that electron transfer from heme a to oxyferryl heme a(3) is not controlled by conformational effects imposed by the initial redox state of the enzyme. The rate constant for electron transfer from heme a to oxyferryl heme a(3) is the same in the R. sphaeroides K362M CcO mutant as in wild-type CcO, indicating that the K-channel is not involved in proton uptake during reduction of compound F.
引用
收藏
页码:14910 / 14916
页数:7
相关论文
共 42 条
[1]   Role of the pathway through K(I-362) in proton transfer in cytochrome c oxidase from R-sphaeroides [J].
Adelroth, P ;
Gennis, RB ;
Brzezinski, P .
BIOCHEMISTRY, 1998, 37 (08) :2470-2476
[2]   Glutamate 286 in cytochrome aa(3) from Rhodobacter sphaeroides is involved in proton uptake during the reaction of the fully-reduced enzyme with dioxygen [J].
Adelroth, P ;
Ek, MS ;
Mitchell, DM ;
Gennis, RB ;
Brzezinski, P .
BIOCHEMISTRY, 1997, 36 (45) :13824-13829
[3]  
ANTALIS TM, 1982, J BIOL CHEM, V257, P6194
[4]   INVOLVEMENT OF INTRA-MITOCHONDRIAL PROTONS IN REDOX REACTIONS OF CYTOCHROME-A [J].
ARTZATBANOV, VY ;
KONSTANTINOV, AA ;
SKULACHEV, VP .
FEBS LETTERS, 1978, 87 (02) :180-185
[5]   INFLUENCE OF BRIDGING LIGAND UNSATURATION ON EXCITED-STATE BEHAVIOR IN MONOMETALLIC AND BIMETALLIC RUTHENIUM(II) DIIMINE COMPLEXES [J].
BABA, AI ;
ENSLEY, HE ;
SCHMEHL, RH .
INORGANIC CHEMISTRY, 1995, 34 (05) :1198-1207
[6]   OXYGEN ACTIVATION AND THE CONSERVATION OF ENERGY IN CELL RESPIRATION [J].
BABCOCK, GT ;
WIKSTROM, M .
NATURE, 1992, 356 (6367) :301-309
[7]   EVIDENCE FOR MODULATION OF THE HEME ABSORPTIONS OF CYTOCHROME-C OXIDASE BY METAL-METAL INTERACTIONS [J].
BLAIR, DF ;
BOCIAN, DF ;
BABCOCK, GT ;
CHAN, SI .
BIOCHEMISTRY, 1982, 21 (26) :6928-6935
[8]  
BLAIR DF, 1983, CHEM SCRIPTA, V21, P43
[9]   POLYPEPTIDE COMPOSITION OF CYTOCHROME-OXIDASE FROM BEEF HEART-MITOCHONDRIA [J].
CAPALDI, RA ;
HAYASHI, H .
FEBS LETTERS, 1972, 26 (01) :261-+
[10]   OXIDATION-REDUCTION POTENTIAL OF COPPER SIGNAL IN PIGEON HEART MITOCHONDRIA [J].
ERECINSKA, M ;
CHANCE, B ;
WILSON, DF .
FEBS LETTERS, 1971, 16 (04) :284-+