Strong coupling of single emitters to surface plasmons

被引:275
作者
Chang, D. E. [1 ]
Sorensen, A. S.
Hemmer, P. R.
Lukin, M. D.
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Niels Bohr Inst, DK-2100 Copenhagen O, Denmark
[3] Texas A&M Univ, Elect Engn Dept, College Stn, TX 77843 USA
[4] Harvard Smithsonian Ctr Astrophys, Inst Theoret Atom & Mol Phys, Cambridge, MA 02138 USA
关键词
D O I
10.1103/PhysRevB.76.035420
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose a method that enables strong, coherent coupling between individual optical emitters and electromagnetic excitations in conducting nanostructures. The excitations are optical plasmons that can be localized to subwavelength dimensions. Under realistic conditions, the tight confinement causes optical emission to be almost entirely directed into the propagating plasmon modes via a mechanism analogous to cavity quantum electrodynamics. We first illustrate this result for the case of a nanowire, before considering the optimized geometry of a nanotip. We describe an application of this technique involving efficient single-photon generation on demand, in which the plasmons are efficiently outcoupled to a dielectric waveguide. Finally, we analyze the effects of increased scattering due to surface roughness on these nanostructures.
引用
收藏
页数:26
相关论文
共 54 条
[1]   CONVERGENT SCHEME FOR LIGHT-SCATTERING FROM AN ARBITRARY DEEP METALLIC GRATING [J].
AGASSI, D ;
GEORGE, TF .
PHYSICAL REVIEW B, 1986, 33 (04) :2393-2400
[2]   Single crystal silver nanowires prepared by the metal amplification method [J].
Barbic, M ;
Mock, JJ ;
Smith, DR ;
Schultz, S .
JOURNAL OF APPLIED PHYSICS, 2002, 91 (11) :9341-9345
[3]   Design of photonic crystal waveguides for evanescent coupling to optical fiber tapers and integration with high-Q cavities [J].
Barclay, PE ;
Srinivasan, K ;
Painter, O .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2003, 20 (11) :2274-2284
[4]   Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation [J].
Blais, A ;
Huang, RS ;
Wallraff, A ;
Girvin, SM ;
Schoelkopf, RJ .
PHYSICAL REVIEW A, 2004, 69 (06) :062320-1
[5]   Channel plasmon subwavelength waveguide components including interferometers and ring resonators [J].
Bozhevolnyi, SI ;
Volkov, VS ;
Devaux, E ;
Laluet, JY ;
Ebbesen, TW .
NATURE, 2006, 440 (7083) :508-511
[6]   Quantum repeaters:: The role of imperfect local operations in quantum communication [J].
Briegel, HJ ;
Dür, W ;
Cirac, JI ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 1998, 81 (26) :5932-5935
[7]   Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit [J].
Brongersma, ML ;
Hartman, JW ;
Atwater, HA .
PHYSICAL REVIEW B, 2000, 62 (24) :16356-16359
[8]   Quantum rabi oscillation: A direct test of field quantization in a cavity [J].
Brune, M ;
Schmidt-Kaler, F ;
Maali, A ;
Dreyer, J ;
Hagley, E ;
Raimond, JM ;
Haroche, S .
PHYSICAL REVIEW LETTERS, 1996, 76 (11) :1800-1803
[9]   Azimuthally polarized surface plasmons as effective terahertz waveguides [J].
Cao, Q ;
Jahns, J .
OPTICS EXPRESS, 2005, 13 (02) :511-518
[10]   Quantum optics with surface plasmons [J].
Chang, D. E. ;
Sorensen, A. S. ;
Hemmer, P. R. ;
Lukin, M. D. .
PHYSICAL REVIEW LETTERS, 2006, 97 (05)