Slicing up the San Francisco Bay Area:: block kinematics and fault slip rates from GPS-derived surface velocities -: art. no. B06403

被引:108
作者
d'Alessio, MA
Johanson, IA
Bürgmann, R
Schmidt, DA
Murray, MH
机构
[1] Berkeley Seismol Lab, Berkeley, CA 94720 USA
[2] Univ Oregon, Dept Geol Sci, Eugene, OR 97403 USA
关键词
D O I
10.1029/2004JB003496
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Observations of surface deformation allow us to determine the kinematics of faults in the San Francisco Bay Area. We present the Bay Area velocity unification (B (A) over barV (U) over bar, "bay view"), a compilation of over 200 horizontal surface velocities computed from campaign-style and continuous Global Positioning System (GPS) observations from 1993 to 2003. We interpret this interseismic velocity field using a three-dimensional block model to determine the relative contributions of block motion, elastic strain accumulation, and shallow aseismic creep. The total relative motion between the Pacific plate and the rigid Sierra Nevada/Great Valley (SNGV) microplate is 37.9 +/- 0.6 mm yr(-1) directed toward N30.4 degrees W +/- 0.8 degrees at San Francisco (+/- 2 sigma). Fault slip rates from our preferred model are typically within the error bounds of geologic estimates but provide a better fit to geodetic data ( notable right-lateral slip rates in mm yr(-1): San Gregorio fault, 2.4 +/- 1.0; West Napa fault, 4.0 +/- 3.0; zone of faulting along the eastern margin of the Coast Range, 5.4 +/- 1.0; and Mount Diablo thrust, 3.9 +/- 1.0 of reverse slip and 4.0 +/- 0.2 of right-lateral strike slip). Slip on the northern Calaveras is partitioned between both the West Napa and Concord/Green Valley fault systems. The total convergence across the Bay Area is negligible. Poles of rotation for Bay Area blocks progress systematically from the North America-Pacific to North America-SNGV poles. The resulting present-day relative motion cannot explain the strike of most Bay Area faults, but fault strike does loosely correlate with inferred plate motions at the time each fault initiated.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 59 条
[1]   ITRF2000: A new release of the International Terrestrial Reference frame for earth science applications [J].
Altamimi, Z ;
Sillard, P ;
Boucher, C .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2002, 107 (B10)
[2]  
ANDERSON LW, 2001, 20012 US BUR RECL
[3]  
[Anonymous], 1910, CALIFORNIA EARTHQUAK
[4]  
[Anonymous], 2002, GLOBK GLOBAL KALMAN
[5]  
Argus DF, 2001, GEOL SOC AM BULL, V113, P1580, DOI 10.1130/0016-7606(2001)113<1580:PTMATC>2.0.CO
[6]  
2
[7]  
ARGUS DF, 1991, GEOLOGY, V19, P1085, DOI 10.1130/0091-7613(1991)019<1085:CSNNAM>2.3.CO
[8]  
2
[9]   Pacific North America plate tectonics of the Neogene southwestern United States: An update [J].
Atwater, T ;
Stock, J .
INTERNATIONAL GEOLOGY REVIEW, 1998, 40 (05) :375-402
[10]   Contemporary strain rates in the northern Basin and Range province from GPS data [J].
Bennett, RA ;
Wernicke, BP ;
Niemi, NA ;
Friedrich, AM ;
Davis, JL .
TECTONICS, 2003, 22 (02)