Adult stem cells in renal injury and repair

被引:30
作者
Ricardo, SD [1 ]
Deane, JA
机构
[1] Monash Univ, Dept Anat & Cell Biol, Clayton, Vic 3800, Australia
[2] Monash Univ, MISCL, Clayton, Vic 3800, Australia
关键词
bone marrow stem cells; cell fusion; EMT; renal regeneration; reparative medicine; transdifferentiation;
D O I
10.1111/j.1440-1797.2005.00373.x
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
There has been considerable focus on the ability of bone marrow-derived cells to differentiate into non-haematopoietic cells of various tissue lineages, including cells of the kidney. This growing evidence has led to a reconsideration of the source of cells contributing to renal repair following injury. The kidney has an inherent ability for recovery and regeneration following acute damage. It is thought that dedifferentiation of glomerular and tubular cells to a more embryonic/mesenchymal phenotype represent key processes for recovery in response to damage. However, there has been much contention as to the source of regenerating renal cells. The present review focuses on new aspects of the plasticity of intrinsic renal cells and their role in renal remodelling and scarring. Growing support also suggests that bone marrow-derived cells have the ability to contribute to structural and functional repair following acute renal failure. Evidence for bone marrow cell engraftment in the repairing kidney leading to incorporation into a variety of tissue types is discussed. Because cell death and fibrosis is a common end-point in a variety of acute and chronic renal nephropathies, the paradigm of stem cell plasticity may have important implications in the cellular and pathological mechanisms of renal injury and repair. A better understanding of the processes controlling extra-renal cell engraftment and intrinsic renal cell differentiation may provide important clues for the development of new cell-based therapies in the field of renal reparative medicine.
引用
收藏
页码:276 / 282
页数:7
相关论文
共 65 条
[1]   Stem cells in the kidney [J].
Al-Awqati, Q ;
Oliver, JA .
KIDNEY INTERNATIONAL, 2002, 61 (02) :387-395
[2]   Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes [J].
Alvarez-Dolado, M ;
Pardal, R ;
Garcia-Vardugo, JM ;
Fike, JR ;
Lee, HO ;
Pfeffer, K ;
Lois, C ;
Morrison, SJ ;
Alvarez-Buylla, A .
NATURE, 2003, 425 (6961) :968-973
[3]   Regenerative medicine and urology [J].
Atala, A .
BJU INTERNATIONAL, 2003, 92 :58-67
[5]  
Bariéty J, 2001, J AM SOC NEPHROL, V12, P261, DOI 10.1681/ASN.V122261
[6]   Adult cardiac stem cells are multipotent and support myocardial regeneration [J].
Beltrami, AP ;
Barlucchi, L ;
Torella, D ;
Baker, M ;
Limana, F ;
Chimenti, S ;
Kasahara, H ;
Rota, M ;
Musso, E ;
Urbanek, K ;
Leri, A ;
Kajstura, J ;
Nadal-Ginard, B ;
Anversa, P .
CELL, 2003, 114 (06) :763-776
[7]   Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure [J].
Bonventre, JV .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2003, 14 (06) :S55-S61
[8]   From marrow to brain: Expression of neuronal phenotypes in adult mice [J].
Brazelton, TR ;
Rossi, FMV ;
Keshet, GI ;
Blau, HM .
SCIENCE, 2000, 290 (5497) :1775-1779
[9]   Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates [J].
Camargo, FD ;
Green, R ;
Capetenaki, Y ;
Jackson, KA ;
Goodell, MA .
NATURE MEDICINE, 2003, 9 (12) :1520-1527
[10]  
Cornacchia F, 2001, J CLIN INVEST, V108, P1649