An approach based on electrochemistry to differentiate between phosphorylated and nonphosphorylated amino acid analogues adsorbed on gold is presented. Analogues of serine, threonine, and tyrosine, containing thiohexadecyl headgroups, were synthesized and assembled on gold, and the surface capacitance was evaluated using electrochemical impedance spectroscopy. A procedure for deprotection of tert-butyl phosphate protecting groups, on the monolayer, is also described. Characterizations of the assembled analogues by cyclic voltammetry, infrared spectroscopy, and ellipsometry are used to confirm the insulating properties of the monolayers and the outcome of surface modifications. The results from cyclic voltammetry show good insulating properties for the monolayers even after phosphate deprotection. The infrared measurements reveal well-ordered monolayers, and the thickness from ellipsometry is in good agreement with expectations from molecular modeling. The impedance experiments show a capacitance increase up to 0.6 muF/cm(2) as phosphate groups are introduced. The results in this study indicate the possibility of using a surface chemical and impedance spectroscopy approach to detect the kinase/phosphatase activity and kinetics involved in phosphorylation reactions.