A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol

被引:189
作者
Becker, J [1 ]
Boles, E [1 ]
机构
[1] Univ Dusseldorf, Inst Mikrobiol, D-40225 Dusseldorf, Germany
关键词
D O I
10.1128/AEM.69.7.4144-4150.2003
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Metabolic engineering is a powerful method to improve, redirect, or generate new metabolic reactions or whole pathways in microorganisms. Here we describe the engineering of a Saccharomyces cerevisiae strain able to utilize the pentose sugar (L)-arabinose for growth and to ferment it to ethanol. Expanding the substrate fermentation range of S. cerevisiae to include pentoses is important for the utilization of this yeast in economically feasible biomass-to-ethanol fermentation processes. After overexpression of a bacterial (L)-arabinose utilization pathway consisting of Bacillus subtilis AraA and Escherichia coli AraB and AraD and simultaneous overexpression of the (L)-arabinose-transporting yeast galactose permease, we were able to select an (L)-arabinose-utilizing yeast strain by sequential transfer in (L)-arabinose media. Molecular analysis of this strain, including DNA microarrays, revealed that the crucial prerequisite for efficient utilization of (L)-arabinose is a lowered activity of (L)-ribulokinase. Moreover, high (L)-arabinose uptake rates and enhanced transaidolase activities favor utilization of (L)-arabinose. With a doubling time of about 7.9 h in a medium with (L)-arabinose as the sole carbon source, an ethanol production rate of 0.06 to 0.08 g of ethanol per g (dry weight) . h(-1) under oxygen-limiting conditions, and high ethanol yields, this yeast strain should be useful for efficient fermentation of hexoses and pentoses in cellulosic biomass hydrolysates.
引用
收藏
页码:4144 / 4150
页数:7
相关论文
共 39 条
[1]  
Barnett J A, 1976, Adv Carbohydr Chem Biochem, V32, P125, DOI 10.1016/S0065-2318(08)60337-6
[2]   INVOLVEMENT OF KINASES IN GLUCOSE AND FRUCTOSE UPTAKE BY SACCHAROMYCES-CEREVISIAE [J].
BISSON, LF ;
FRAENKEL, DG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1983, 80 (06) :1730-1734
[3]   SACCHAROMYCES-CEREVISIAE PHOSPHOGLUCOSE ISOMERASE AND FRUCTOSE BISPHOSPHATE ALDOLASE CAN BE REPLACED FUNCTIONALLY BY THE CORRESPONDING ENZYMES OF ESCHERICHIA-COLI AND DROSOPHILA-MELANOGASTER [J].
BOLES, E ;
ZIMMERMANN, FK .
CURRENT GENETICS, 1993, 23 (03) :187-191
[4]  
BRAND K, 1974, METHODEN ENZYMATISCH, P752
[5]   L-ARABINOSE METABOLISM BY CELL-FREE EXTRACTS OF PENICILLIUM CHRYSOGENUM [J].
CHIANG, C ;
KNIGHT, SG .
BIOCHIMICA ET BIOPHYSICA ACTA, 1961, 46 (02) :271-&
[6]   PHYSIOLOGICAL-EFFECTS OF 7 DIFFERENT BLOCKS IN GLYCOLYSIS IN SACCHAROMYCES-CEREVISIAE [J].
CIRIACY, M ;
BREITENBACH, I .
JOURNAL OF BACTERIOLOGY, 1979, 139 (01) :152-160
[7]   Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering [J].
Deanda, K ;
Zhang, M ;
Eddy, C ;
Picataggio, S .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1996, 62 (12) :4465-4470
[8]   Screening for L-arabinose fermenting yeasts [J].
Dien, BS ;
Kurtzman, CP ;
Saha, BC ;
Bothast, RJ .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 1996, 57-8 :233-242
[9]   Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae [J].
Dunham, MJ ;
Badrane, H ;
Ferea, T ;
Adams, J ;
Brown, PO ;
Rosenzweig, F ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (25) :16144-16149
[10]   Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures [J].
Eliasson, A ;
Christensson, C ;
Wahlbom, CF ;
Hahn-Hägerdal, B .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (08) :3381-3386