Nonperturbative summation over 3D discrete topologies

被引:29
作者
Freidel, L
Louapre, D
机构
[1] Perimeter Inst Theoret Phys, Waterloo, ON N2J 2G9, Canada
[2] Ecole Normale Super Lyon, Phys Lab, F-69364 Lyon, France
来源
PHYSICAL REVIEW D | 2003年 / 68卷 / 10期
关键词
D O I
10.1103/PhysRevD.68.104004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The group field theories realizing the sum over all triangulations of all topologies of 3D discrete gravity amplitudes are known to be nonuniquely Borel summable. We modify these models to construct a new group field theory which is proved to be uniquely Borel summable, defining in an unambiguous way a nonperturbative sum over topologies in the context of 3D dynamical triangulations and spin foam models. Moreover, we give some arguments to support the fact that, despite our modification, this new model is similar to the original one, and therefore could be taken as a definition of the sum over topologies of 3D quantum gravity amplitudes.
引用
收藏
页数:16
相关论文
共 22 条
[1]   3-DIMENSIONAL SIMPLICIAL QUANTUM-GRAVITY AND GENERALIZED MATRIX MODELS [J].
AMBJORN, J ;
DURHUUS, B ;
JONSSON, T .
MODERN PHYSICS LETTERS A, 1991, 6 (12) :1133-1146
[2]   NONPERTURBATIVE 2D QUANTUM-GRAVITY AND HAMILTONIANS UNBOUNDED FROM BELOW [J].
AMBJORN, J ;
KRISTJANSEN, CF .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1993, 8 (07) :1259-1281
[3]   Dynamically triangulating Lorentzian quantum gravity [J].
Ambjorn, J ;
Jurkiewicz, J ;
Loll, R .
NUCLEAR PHYSICS B, 2001, 610 (1-2) :347-382
[4]  
Baez JC, 2000, LECT NOTES PHYS, V543, P25
[5]  
Block, 1968, SPECTROSCOPIC GROUP
[6]   A MODEL OF 3-DIMENSIONAL LATTICE GRAVITY [J].
BOULATOV, DV .
MODERN PHYSICS LETTERS A, 1992, 7 (18) :1629-1646
[7]   Barrett-Crane model from a Boulatov-Ooguri field theory over a homogeneous space [J].
De Pietri, R ;
Freidel, L ;
Krasnov, K ;
Rovelli, C .
NUCLEAR PHYSICS B, 2000, 574 (03) :785-806
[8]   Feynman diagrams of generalized matrix models and the associated manifolds in dimension four [J].
De Pietri, R ;
Petronio, C .
JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (10) :6671-6688
[9]  
DIFRANCESCO P, 1995, PHYS REP, V254, P1, DOI 10.1016/0370-1573(94)00084-G
[10]   DIVERGENCE OF PERTURBATION THEORY IN QUANTUM ELECTRODYNAMICS [J].
DYSON, FJ .
PHYSICAL REVIEW, 1952, 85 (04) :631-632