Instability of a magnetized plasma jet

被引:15
作者
Biskamp, D [1 ]
Schwarz, E [1 ]
Zeiler, A [1 ]
机构
[1] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
关键词
D O I
10.1063/1.872931
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The stability characteristics of a plasma jet V(x) = sech(2) x embedded in a parallel magnetic field B(x) = B-0 tanh x are investigated. The Kelvin-Helmholtz kink mode, which dominates at small Bo, is stabilized at B-0 = 0.46, while the pinch mode remains unstable up to B-0 = 0.96. Contrary to a nonmagnetized jet, for finite Bo the kink mode saturates quasilinearly by broadening the jet, such that B-0/V-max becomes larger than the marginal value 0.46. Including finite resistivity the nonlinear behavior is eventually governed by the tearing mode for all values of B-0 not equal 0, consisting of a single plasmoid moving along the jet. Hence the shear flow cannot stabilize the tearing mode, so that the apparent tearing stability of resistive current sheets observed in numerical simulations of magnetic reconnection is only due to finite-length effects. (C) 1998 American Institute of Physics. [S1070-664X(98)01207-5]
引用
收藏
页码:2485 / 2488
页数:4
相关论文
共 19 条
[1]  
Bickley WG, 1937, PHILOS MAG, V23, P727
[2]   MAGNETIC RECONNECTION VIA CURRENT SHEETS [J].
BISKAMP, D .
PHYSICS OF FLUIDS, 1986, 29 (05) :1520-1531
[3]   Partial reconnection in the nonlinear internal kink mode [J].
Biskamp, D ;
Sato, T .
PHYSICS OF PLASMAS, 1997, 4 (05) :1326-1329
[4]   ION-CONTROLLED COLLISIONLESS MAGNETIC RECONNECTION [J].
BISKAMP, D ;
SCHWARZ, E ;
DRAKE, JF .
PHYSICAL REVIEW LETTERS, 1995, 75 (21) :3850-3853
[5]   NONLINEAR INSTABILITY MECHANISM IN 3D COLLISIONAL DRIFT-WAVE TURBULENCE [J].
BISKAMP, D ;
ZEILER, A .
PHYSICAL REVIEW LETTERS, 1995, 74 (05) :706-709
[6]   MAGNETIC RECONNECTION [J].
BISKAMP, D .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1994, 237 (04) :179-247
[7]  
Bulanov S. V., 1979, SOV J PLASMA PHYS, V5, P157
[8]  
Chandrasekhar S., 1981, HYDRODYNAMIC HYDROMA
[9]  
Drazin P.G., 1981, HYDRODYNAMIC STABILI
[10]   The magnetohydrodynamic Kelvin-Helmholtz instability: A two-dimensional numerical study [J].
Frank, A ;
Jones, TW ;
Ryu, DS ;
Gaalaas, JB .
ASTROPHYSICAL JOURNAL, 1996, 460 (02) :777-793