Vertically aligned carbon-nanotube arrays showing schottky behavior at room temperature

被引:14
作者
Jung, SH
Jeong, SH
Kim, SU
Hwang, SK
Lee, PS
Lee, KH [1 ]
Ko, JH
Bae, E
Kang, D
Park, W
Oh, H
Kim, JJ
Kim, H
Park, CG
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Chem Engn, Comp & Elect Engn Div, Pohang 790784, South Korea
[2] Kyungpook Natl Univ, Dept Chem Engn, Taegu 702701, South Korea
[3] Samsung Adv Inst Technol, Suwon 440600, South Korea
[4] Chongbuk Natl Univ, Dept Phys, Chonju 561756, South Korea
[5] Pohang Univ Sci & Technol POSTECH, Dept Mat Sci & Engn, Pohang 790784, South Korea
关键词
anodization; carbon nanotubes; electrical properties; template synthesis; transistors;
D O I
10.1002/smll.200400114
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Vertically aligned carbon-nanotube (CNT) arrays were fabricated in the thin-film anodic aluminum oxide (AAO) templates on silicon wafers utilizing a niobium(Nb) thin film as the source electrode. The average diameter of the CNTs was 25 nm, and the number density was 3 x 10(10) cm(-2). The CNT arrays synthesized at 700 degrees C and above exhibited Schottky behavior even at 300 K, with energy gaps between 0.2 eV and 0.3 eV However, individual CNTs obtained by removal of the template behaved as resistors at 300 K The CNT/Nb oxide/Nb junction is thought to be responsible for the Schottky behavior. This structure can be a useful cornerstone in the fabrication of nanotransistors operating at room temperature.
引用
收藏
页码:553 / 559
页数:7
相关论文
共 21 条
[1]  
BASCA WS, 1994, PHYS REV B, V50, P15473
[2]   Carbon nanotube actuators [J].
Baughman, RH ;
Cui, CX ;
Zakhidov, AA ;
Iqbal, Z ;
Barisci, JN ;
Spinks, GM ;
Wallace, GG ;
Mazzoldi, A ;
De Rossi, D ;
Rinzler, AG ;
Jaschinski, O ;
Roth, S ;
Kertesz, M .
SCIENCE, 1999, 284 (5418) :1340-1344
[3]   Carbon nanotubule membranes for electrochemical energy storage and production [J].
Che, GL ;
Lakshmi, BB ;
Fisher, ER ;
Martin, CR .
NATURE, 1998, 393 (6683) :346-349
[4]   Ultrahigh-density nanotransistors by using selectively grown vertical carbon nanotubes [J].
Choi, WB ;
Chu, JU ;
Jeong, KS ;
Bae, EJ ;
Lee, JW ;
Kim, JJ ;
Lee, JO .
APPLIED PHYSICS LETTERS, 2001, 79 (22) :3696-3698
[5]   Carbon-nanotube-based nonvolatile memory with oxide-nitride-oxide film and nanoscale channel [J].
Choi, WB ;
Chae, S ;
Bae, E ;
Lee, JW ;
Cheong, BH ;
Kim, JR ;
Kim, JJ .
APPLIED PHYSICS LETTERS, 2003, 82 (02) :275-277
[6]  
EBBESEN TW, 1997, CARBON NANOTUBES PRE, pCH7
[7]   Self-oriented regular arrays of carbon nanotubes and their field emission properties [J].
Fan, SS ;
Chapline, MG ;
Franklin, NR ;
Tombler, TW ;
Cassell, AM ;
Dai, HJ .
SCIENCE, 1999, 283 (5401) :512-514
[8]   RAMAN STUDIES OF CARBON NANOTUBES [J].
HIURA, H ;
EBBESEN, TW ;
TANIGAKI, K ;
TAKAHASHI, H .
CHEMICAL PHYSICS LETTERS, 1993, 202 (06) :509-512
[9]   Multiwalled carbon nanotubes growth in anodic alumina nanoholes [J].
Iwasaki, T ;
Motoi, T ;
Den, T .
APPLIED PHYSICS LETTERS, 1999, 75 (14) :2044-2046
[10]   High-κ dielectrics for advanced carbon-nanotube transistors and logic gates [J].
Javey, A ;
Kim, H ;
Brink, M ;
Wang, Q ;
Ural, A ;
Guo, J ;
McIntyre, P ;
McEuen, P ;
Lundstrom, M ;
Dai, HJ .
NATURE MATERIALS, 2002, 1 (04) :241-246