Aggregation kinetics of bovine serum albumin studied by FTIR spectroscopy and light scattering

被引:254
作者
Militello, V
Casarino, C
Emanuele, A
Giostra, A
Pullara, F
Leone, M
机构
[1] Univ Palermo, INFM, I-90123 Palermo, Italy
[2] Univ Palermo, Dept Phys & Astron Sci, I-90123 Palermo, Italy
关键词
bovine serum albumin; protein aggregation; infrared spectroscopy; conformational changes; static light scattering; dynamic light scattering;
D O I
10.1016/j.bpc.2003.09.004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To investigate which type of structural and conformational changes is involved in the aggregation processes of bovine serum albumin (BSA), we have performed thermal aggregation kinetics in D2O solutions of this protein. The tertiary conformational. changes are followed by Amide II band, the secondary structural changes and the formation of beta-aggregates by the Amide I' band and, finally, the hydrodynamic radius of aggregates by dynamic light scattering. The results show, as a function of pD, that: tertiary conformational changes are more rapid as pD increases; the aggregation proceeds through formation of ordered aggregates (oligomers) at pD far from the isoelectric point of the protein; disordered structures add as the pD decreases. Moreover, beta-aggregates seem to contribute only to oligomers formation, as showed by the good correlation between kinetics of scattering intensity and IR absorption intensity. These results indicate for BSA a general mechanism of aggregation composed by partial unfolding of the tertiary structure and by the decrease of alpha-helix and random coil contents in favor of beta-sheet aggregates. This mechanism strictly depends on pD, and gives rise to almost two distinct types of macromolecular aggregates. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:175 / 187
页数:13
相关论文
共 52 条
[1]   Relationships between conformation of β-lactoglobulin in solution and gel states as revealed by attenuated total reflection Fourier transform infrared spectroscopy [J].
Allain, AF ;
Paquin, P ;
Subirade, M .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 1999, 26 (05) :337-344
[2]   DSC STUDIES ON THE DENATURATION AND AGGREGATION OF SERUM ALBUMINS [J].
BARONE, G ;
GIANCOLA, C ;
VERDOLIVA, A .
THERMOCHIMICA ACTA, 1992, 199 :197-205
[3]  
Berne B. J., 2000, DYNAMIC LIGHT SCATTE
[4]   Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis [J].
Booth, DR ;
Sunde, M ;
Bellotti, V ;
Robinson, CV ;
Hutchinson, WL ;
Fraser, PE ;
Hawkins, PN ;
Dobson, CM ;
Radford, SE ;
Blake, CCF ;
Pepys, MB .
NATURE, 1997, 385 (6619) :787-793
[5]   Formation of insulin amyloid fibrils followed by FTIR simultaneously with CD and electron microscopy [J].
Bouchard, M ;
Zurdo, J ;
Nettleton, EJ ;
Dobson, CM ;
Robinson, CV .
PROTEIN SCIENCE, 2000, 9 (10) :1960-1967
[6]   EXAMINATION OF THE SECONDARY STRUCTURE OF PROTEINS BY DECONVOLVED FTIR SPECTRA [J].
BYLER, DM ;
SUSI, H .
BIOPOLYMERS, 1986, 25 (03) :469-487
[7]  
CARTER DC, 1994, ADV PROTEIN CHEM, V45, P153
[8]  
CHAN HS, 1991, ANNU REV BIOPHYS BIO, V20, P447, DOI 10.1146/annurev.bb.20.060191.002311
[9]   Conformational stability of muscle acylphosphatase: The role of temperature, denaturant concentration, and pH [J].
Chiti, F ;
van Nuland, NAJ ;
Taddei, N ;
Magherini, F ;
Stefani, M ;
Ramponi, G ;
Dobson, CM .
BIOCHEMISTRY, 1998, 37 (05) :1447-1455
[10]   Kinetic partitioning of protein folding and aggregation [J].
Chiti, F ;
Taddei, N ;
Baroni, F ;
Capanni, C ;
Stefani, M ;
Ramponi, G ;
Dobson, CM .
NATURE STRUCTURAL BIOLOGY, 2002, 9 (02) :137-143