p-type Cu-Ti-O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation

被引:263
作者
Mor, Gopal K. [1 ,2 ]
Varghese, Oomman K. [1 ,2 ]
Wilke, Rudeger H. T. [1 ,2 ]
Sharma, Sanjeev [1 ,2 ]
Shankar, Karthik [1 ,2 ]
Latempa, Thomas J. [1 ,2 ]
Choi, Kyoung-Shin [3 ]
Grimes, Craig A. [1 ,2 ]
机构
[1] Penn State Univ, Dept Elect Engn, University Pk, PA 16802 USA
[2] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA
[3] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA
关键词
D O I
10.1021/nl080572y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Copper and titanium remain relatively plentiful in the earth's crust; hence, their use for large-scale solar energy conversion technologies is of significant interest. We describe fabrication of vertically oriented p-type Cu-Ti-O nanotube array films by anodization of copper rich (60% to 74%) Ti metal films cosputtered onto fluorine doped tin oxide (FTO) coated glass. Cu-Ti-O nanotube array films 1 mu m thick exhibit external quantum efficiencies up to 11%, with a spectral photoresponse indicating that the complete visible spectrum, 380 to 885 nm, contributes significantly to the photocurrent generation. Water-splitting photoelectrochemical pn-junction diodes are fabricated using p-type Cu-Ti-O nanotube array films in combination with n-type TiO2 nanotube array films. With the glass substrates oriented back-to-back, light is incident upon the UV absorbing n-TiO2 side, with the visible light passing to the p-Cu-Ti-O side. In a manner analogous to photosynthesis, photocatalytic reactions are powered only by the incident light to generate fuel with oxygen evolved from the n-TiO2 side of the diode and hydrogen from the p-Cu-Ti-O side. To date, we find under global AM 1.5 illumination that such photocorrosion-stable diodes generate a photocurrent of approximately 0.25 mA/cm(2), at a photoconversion efficiency of 0.30%.
引用
收藏
页码:1906 / 1911
页数:6
相关论文
共 50 条
[1]   Thin film deposition of Cu2O and application for solar cells [J].
Akimoto, K. ;
Ishizuka, S. ;
Yanagita, M. ;
Nawa, Y. ;
Paul, Goutam K. ;
Sakurai, T. .
SOLAR ENERGY, 2006, 80 (06) :715-722
[2]  
Andersson BA, 2000, PROG PHOTOVOLTAICS, V8, P61, DOI 10.1002/(SICI)1099-159X(200001/02)8:1<61::AID-PIP301>3.0.CO
[3]  
2-6
[4]  
[Anonymous], SOLAR SPECTRAL IRRAD
[5]   Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells [J].
Bisquert, J ;
Cahen, D ;
Hodes, G ;
Rühle, S ;
Zaban, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (24) :8106-8118
[6]   Solvothermal preparation of Cu2O crystalline particles [J].
Chen, SJ ;
Chen, XT ;
Xue, ZL ;
Li, LH ;
You, XZ .
JOURNAL OF CRYSTAL GROWTH, 2002, 246 (1-2) :169-175
[7]   Hydrogen production from methanol/water decomposition in a liquid photosystem using the anatase structure of Cu loaded TiO2 [J].
Choi, Hyung-Joo ;
Kang, Misook .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (16) :3841-3848
[8]   METAL PHTHALOCYANINES AND PORPHYRINS AS PHOTOSENSITIZERS FOR REDUCTION OF WATER TO HYDROGEN [J].
DARWENT, JR ;
DOUGLAS, P ;
HARRIMAN, A ;
PORTER, G ;
RICHOUX, MC .
COORDINATION CHEMISTRY REVIEWS, 1982, 44 (01) :83-126
[9]   Cu2O:: a catalyst for the photochemical decomposition of water? [J].
de Jongh, PE ;
Vanmaekelbergh, D ;
Kelly, JJ .
CHEMICAL COMMUNICATIONS, 1999, (12) :1069-1070
[10]   Selenium-modified titanium dioxide photochemical diode/electrolyte junctions: Photocatalytic and electrochemical preparation, characterization, and model simulations [J].
de Tacconi, NR ;
Chenthamarakshan, CR ;
Rajeshwar, K ;
Tacconi, EJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (24) :11953-11960