Revealing competitive Forster-type resonance energy-transfer pathways in single bichromophoric molecules

被引:152
作者
Hofkens, J
Cotlet, M
Vosch, T
Tinnefeld, P
Weston, KD
Ego, C
Grimsdale, A
Müllen, K
Beljonne, D
Brédas, JL
Jordens, S
Schweitzer, G
Sauer, M
De Schryver, F
机构
[1] Katholieke Univ Leuven, Dept Chem, Lab Photochem & Spect, B-3001 Heverlee, Belgium
[2] Heidelberg Univ, Inst Phys Chem, D-69120 Heidelberg, Germany
[3] Max Planck Inst Polymer Res, D-55128 Mainz, Germany
[4] Univ Mons, B-7000 Mons, Belgium
[5] Univ Arizona, Dept Chem, Tucson, AZ 85721 USA
关键词
D O I
10.1073/pnas.2235805100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We demonstrate measurements of the efficiency of competing Forster-type energy-transfer pathways in single bichromophoric systems by monitoring simultaneously the fluorescence intensity, fluorescence lifetime, and the number of independent emitters with time. Peryleneimide end-capped fluorene trimers, hexamers, and polymers with interchromophore distances of 3.4, 5.9, and on average 42 nm, respectively, served as bichromophoric systems. Because of different energy-transfer efficiencies, variations in the interchromophore distance enable the switching between homo-energy transfer (energy hopping), singlet-singlet annihilation, and singlet-triplet annihilation. The data suggest that similar energy-transfer pathways have to be considered in the analysis of single-molecule trajectories of donor/acceptor pairs as well as in natural and synthetic multichromophoric systems such as light-harvesting antennas, oligomeric fluorescent proteins, and dendrimers. Here we report selectively visualization of different energy-transfer pathways taking place between identical fluorophores in individual bichromophoric molecules.
引用
收藏
页码:13146 / 13151
页数:6
相关论文
共 37 条
[1]   TRIPLET AND RADICAL ION PROPERTIES OF STYRYLNAPHTHALENES AND THEIR AZA-DERIVATIVES - A LASER FLASH PHOTOLYTIC STUDY [J].
ALOISI, GG ;
ELISEI, F ;
LATTERINI, L .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1992, 88 (15) :2139-2145
[2]  
Andrews D. L., 1999, RESONANCE ENERGY TRA
[3]   Interchain interactions in conjugated materials:: The exciton model versus the supermolecular approach [J].
Beljonne, D ;
Cornil, J ;
Silbey, R ;
Millié, P ;
Brédas, JL .
JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (10) :4749-4758
[4]   Photon statistics and dynamics of fluorescence resonance energy transfer [J].
Berglund, AJ ;
Doherty, AC ;
Mabuchi, H .
PHYSICAL REVIEW LETTERS, 2002, 89 (06) :1-068101
[5]   Fluorescence and photobleaching dynamics of single light-harvesting complexes [J].
Bopp, MA ;
Jia, YW ;
Li, LQ ;
Cogdell, RJ ;
Hochstrasser, RM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (20) :10630-10635
[6]   CORRELATION BETWEEN PHOTONS IN 2 COHERENT BEAMS OF LIGHT [J].
BROWN, RH ;
TWISS, RQ .
NATURE, 1956, 177 (4497) :27-29
[7]   TRIPLET-TRIPLET ABSORPTION-SPECTRA OF ORGANIC-MOLECULES IN CONDENSED PHASES [J].
CARMICHAEL, I ;
HUG, GL .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1986, 15 (01) :1-250
[8]   Identification of different emitting species in the red fluorescent protein DsRed by means of ensemble and single-molecule spectroscopy [J].
Cotlet, M ;
Hofkens, J ;
Habuchi, S ;
Dirix, G ;
Van Guyse, M ;
Michiels, J ;
Vanderleyden, J ;
De Schryver, FC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (25) :14398-14403
[9]   Ratiometric measurement and identification of single diffusing molecules [J].
Dahan, M ;
Deniz, AA ;
Ha, TJ ;
Chemla, DS ;
Schultz, PG ;
Weiss, S .
CHEMICAL PHYSICS, 1999, 247 (01) :85-106
[10]  
De Belder G, 2001, CHEMPHYSCHEM, V2, P49, DOI 10.1002/1439-7641(20010119)2:1<49::AID-CPHC49>3.0.CO