On a coverage process ranging from the Boolean model to the Poisson-Voronoi tessellation with applications to wireless communications

被引:88
作者
Baccelli, F
Blaszczyszyn, B
机构
[1] INRIA, ENS, F-75005 Paris, France
[2] Univ Wroclaw, Math Inst, PL-50384 Wroclaw, Poland
关键词
shot noise; Boolean model; Voronoi tessellation; coverage process; point process; Poisson process; random closed set; perturbation analysis; wireless communication; signal to interference ratio; CDMA protocol;
D O I
10.1017/S0001867800010806
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We define and analyse a random coverage process of the d-dimensional Euclidean space which allows us to describe a continuous spectrum that ranges from the Boolean model to the Poisson-Voronoi tessellation to the Johnson-Mehl model. As for the Boolean model, the minimal stochastic setting consists of a Poisson point process on this Euclidean space and a sequence of real valued random variables considered as marks of this point process. In this coverage process, the cell attached to a point is defined as the region of the space where the effect of the mark of this point exceeds an affine function of the cumulative effect of all marks. This cumulative effect is defined as the shot-noise process associated with the marked point process. In addition to analysing and visualizing this spectrum, we study various basic properties of the coverage process such as the probability that a point or a pair of points be covered by a typical cell. We also determine the distribution of the number of cells which cover a given point, and show how to provide deterministic bounds on this number. Finally, we also analyse convergence properties of the coverage process using the framework of closed sets, and its differentiability properties using perturbation analysis. Our results require a pathwise continuity property for the shot-noise process for which we provide sufficient conditions. The model in question stems from wireless communications where several antennas share the same (or different but interfering) channel(s). In this case, the area where the signal of a given antenna can be received is the area where the signal to interference ratio is large enough. We describe this class of problems in detail in the paper. The results obtained allow us to compute quantities of practical interest within this setting: for instance the outage probability is obtained as the complement of the volume fraction; the law of the number of cells covering a point allows us to characterize handover strategies, and so on.
引用
收藏
页码:293 / 323
页数:31
相关论文
共 18 条
[1]  
[Anonymous], RANDOM SETS INTEGRAL
[2]   Stochastic geometry and architecture of communication networks [J].
Baccelli, F ;
Klein, M ;
Lebourges, M ;
Zuyev, S .
TELECOMMUNICATION SYSTEMS, 1997, 7 (1-3) :209-227
[3]  
BACCELLI F, 2000, 4019 INRIA
[4]   A note on expansion for functionals of spatial marked point processes [J].
Blaszczyszyn, B ;
Merzbach, E ;
Schmidt, V .
STATISTICS & PROBABILITY LETTERS, 1997, 36 (03) :299-306
[5]  
Ehrenberger U, 1999, TELETRAF SCI ENG, V3, P129
[6]  
Feller W., 1991, An Introduction to Probability Theory and Its Applications, VII
[7]  
Gakhov F D., 1990, Boundary Value Problems
[8]   Computation of shot-noise probability distributions and densities [J].
Gubner, JA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (03) :750-761
[9]   The capacity of wireless networks [J].
Gupta, P ;
Kumar, PR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (02) :388-404
[10]  
HALL P., 1988, INTRO THEORY COVERAG