Schwarz methods: To symmetrize or not to symmetrize

被引:16
作者
Holst, M
Vandewalle, S
机构
[1] Applied Mathematics, California Institute of Technology, Pasadena, CA 91125
关键词
multigrid; domain decomposition; Krylov methods; Schwarz methods; conjugate gradients; Bi-CGstab;
D O I
10.1137/S0036142994275743
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A preconditioning theory is presented which establishes sufficient conditions for multiplicative and additive Schwarz algorithms to yield self-adjoint positive definite preconditioners. It allows for the analysis and use of nonvariational and nonconvergent linear methods as preconditioners for conjugate gradient methods, and it is applied to domain decomposition and multigrid. It is illustrated why symmetrizing may be a bad idea for linear methods. It is conjectured that enforcing minimal symmetry achieves the best results when combined with conjugate gradient acceleration. Also, it is shown that the absence of symmetry in the linear preconditioner is advantageous when the linear method is accelerated by using the Bi-CGstab method. Numerical examples are presented for two test problems which illustrate the theory and conjectures.
引用
收藏
页码:699 / 722
页数:24
相关论文
共 30 条
[1]  
ASHBY S, 1992, UCRLJC112586 LAWR LI
[2]   A TAXONOMY FOR CONJUGATE-GRADIENT METHODS [J].
ASHBY, SF ;
MANTEUFFEL, TA ;
SAYLOR, PE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (06) :1542-1568
[3]   THE HIERARCHICAL BASIS MULTIGRID METHOD [J].
BANK, RE ;
DUPONT, TF ;
YSERENTANT, H .
NUMERISCHE MATHEMATIK, 1988, 52 (04) :427-458
[4]  
BRAMBLE JH, 1991, MATH COMPUT, V57, P1, DOI 10.1090/S0025-5718-1991-1090464-8
[5]  
BRAMBLE JH, 1991, MATH COMPUT, V57, P23, DOI 10.1090/S0025-5718-1991-1079008-4
[6]  
BRANDT A, 1977, MATH COMPUT, V31, P333, DOI 10.1090/S0025-5718-1977-0431719-X
[7]  
BRIGGS JM, 1990, COMPUT PHYS, V6, P238
[8]  
Concus Paul, 1976, Sparse Matrix Computations, P309
[9]  
DRYJA M, 1989, 3 INT S DOM DEC METH, P3
[10]  
Fedorenko, 1962, COMP MATH MATH PHYS+, V1, P1092, DOI DOI 10.1016/0041-5553(62)90031-9