Cellular mechanisms for heavy metal detoxification and tolerance

被引:1966
作者
Hall, JL [1 ]
机构
[1] Univ Southampton, Sch Biol Sci, Southampton SO16 7PX, Hants, England
关键词
detoxification; heat shock proteins; heavy metal tolerance; metallothioneins; mycorrhiza; phytochelatins; plasma membrane; vacuolar compartmentation;
D O I
10.1093/jexbot/53.366.1
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Heavy metals such as Cu and Zn are essential for normal plant growth, although elevated concentrations of both essential and non-essential metals can result in growth inhibition and toxicity symptoms. Plants possess a range of potential cellular mechanisms that may be involved in the detoxification of heavy metals and thus tolerance to metal stress. These include roles for the following: for mycorrhiza and for binding to cell wall and extracellular exudates; for reduced uptake or efflux pumping of metals at the plasma membrane; for chelation of metals in the cytosol by peptides such as phytochelatins; for the repair of stress-damaged proteins; and for the compartmentation of metals in the vacuole by tonoplast-located transporters. This review provides a broad overview of the evidence for an involvement of each mechanism in heavy metal detoxification and tolerance.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 106 条
[1]  
[Anonymous], BIOCH BIOPHYS ACTA
[2]  
[Anonymous], 2000, PLANT CELL VACUOLES
[3]   A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants [J].
Arazi, T ;
Sunkar, R ;
Kaplan, B ;
Fromm, H .
PLANT JOURNAL, 1999, 20 (02) :171-182
[4]   Cadmium uptake and subcellular compartmentation in the ectomycorrhizal fungus Paxillus involutus [J].
Blaudez, D ;
Botton, B ;
Chalot, M .
MICROBIOLOGY-SGM, 2000, 146 :1109-1117
[5]   THE OCTADECANOIC PATHWAY - SIGNAL MOLECULES FOR THE REGULATION OF SECONDARY PATHWAYS [J].
BLECHERT, S ;
BRODSCHELM, W ;
HOLDER, S ;
KAMMERER, L ;
KUTCHAN, TM ;
MUELLER, MJ ;
XIA, ZQ ;
ZENK, MH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (10) :4099-4105
[6]   Heavy metal tolerance of Silene vulgaris [J].
Bringezu, K ;
Lichtenberger, O ;
Leopold, I ;
Neumann, D .
JOURNAL OF PLANT PHYSIOLOGY, 1999, 154 (04) :536-546
[7]   COMPARTMENTATION AND TRANSPORT OF ZINC IN BARLEY PRIMARY LEAVES AS BASIC MECHANISMS INVOLVED IN ZINC TOLERANCE [J].
BRUNE, A ;
URBACH, W ;
DIETZ, KJ .
PLANT CELL AND ENVIRONMENT, 1994, 17 (02) :153-162
[8]   DIFFERENTIAL TOXICITY OF HEAVY-METALS IS PARTLY RELATED TO A LOSS OF PREFERENTIAL EXTRAPLASMIC COMPARTMENTATION - A COMPARISON OF CD-STRESS, MO-STRESS, NI-STRESS AND ZN-STRESS [J].
BRUNE, A ;
URBACH, W ;
DIETZ, KJ .
NEW PHYTOLOGIST, 1995, 129 (03) :403-409
[9]   Tansley review No. 111 - Possible roles of zinc in protecting plant cells from damage by reactive oxygen species [J].
Cakmak, I .
NEW PHYTOLOGIST, 2000, 146 (02) :185-205
[10]   Isolation of a type 2 metallothionein-like gene preferentially expressed in the tapetum in Zea mays [J].
Charbonnel-Campaa, L ;
Lauga, B ;
Combes, D .
GENE, 2000, 254 (1-2) :199-208