The gravitational potential and its derivatives for the prism

被引:331
作者
Nagy, D
Papp, G
Benedek, J
机构
[1] Geomat Canada, Geodet Survey Div, Ottawa, ON K1A 0E9, Canada
[2] Hungarian Acad Sci, Geodet & Geophys Res Inst, H-9401 Sopron, Hungary
关键词
rectangular parallelepiped; prism; gravitational potential; derivatives;
D O I
10.1007/s001900000116
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
As a simple building block, the right rectangular parallelepiped (prism) has an important role mostly in local gravity field modelling studies when the so called flat-Earth approximation is sufficient. Its primary (methodological) advantage follows from the simplicity of the rigorous and consistent analytical forms describing the different gravitation-related quantities. The analytical forms provide numerical values for these quantities which satisfy the functional connections existing between these quantities at the level of numerical precision applied. Closed expressions for the gravitational potential of the prism and its derivatives (up to the third order) are listed for easy reference.
引用
收藏
页码:552 / 560
页数:9
相关论文
共 29 条
[1]  
[Anonymous], 1930, The Theory of the Potential
[2]  
Bessel F., 1813, BESSEL ZACHS MONATLI, V27, P80
[3]  
EVEREST G, 1830, ACCOUNT MEASUREMENT, P93
[4]  
Haaz I. B., 1953, GEOFIZIKAI KOZLEMENY, VII, P57
[5]   DTM-BASED SURFACE AND VOLUME APPROXIMATION - GEOPHYSICAL APPLICATIONS [J].
KALMAR, J ;
PAPP, G ;
SZABO, T .
COMPUTERS & GEOSCIENCES, 1995, 21 (02) :245-257
[6]  
LANCASTERJONES E, 1928, TECH PUBL AM I MININ, V75, P1
[7]  
MOLLWEIDE KB, 1813, MONATL CORRESP, V24, P522
[8]  
Nagy D., 1990, Bulletin Geodesique, V64, P283, DOI 10.1007/BF02519181
[9]  
Nagy D., 1988, Acta Geodaetica, Geophysica et Montanistica Hungarica, V23, P97