Practical issues in implementing and understanding Bayesiain ideal point estimation

被引:124
作者
Bafumi, J [1 ]
Gelman, A
Park, DK
Kaplan, N
机构
[1] Columbia Univ, Dept Polit Sci, New York, NY 10027 USA
[2] Columbia Univ, Dept Stat, New York, NY 10027 USA
[3] Washington Univ, Dept Polit Sci, St Louis, MO USA
[4] Univ Houston, Dept Polit Sci, Houston, TX USA
基金
美国国家科学基金会;
关键词
D O I
10.1093/pan/mpi010
中图分类号
D0 [政治学、政治理论];
学科分类号
0302 ; 030201 ;
摘要
Logistic regression models have been used in political science for estimating ideal points of legislators and Supreme Court justices. These models present estimation and identifiability challenges, such as improper variance estimates, scale and translation invariance, reflection invariance, and issues with outliers. We address these issues using Bayesian hierarchical modeling, linear transformations, informative regression predictors, and explicit modeling for outliers. In addition, we explore new ways to usefully display inferences and check model fit.
引用
收藏
页码:171 / 187
页数:17
相关论文
共 27 条
[1]  
[Anonymous], LANG ENV STAT COMP
[2]  
BAFUMI J, 2002, 2002 ANN M MIDW POL
[3]   The statistical analysis of roll call data [J].
Clinton, J ;
Jackman, S ;
Rivers, D .
AMERICAN POLITICAL SCIENCE REVIEW, 2004, 98 (02) :355-370
[4]  
CLINTON J, 2003, STAT ANAL ROLL CALL
[5]  
CLINTON J, 2001, 2001 ANN M AM POL SC
[6]  
Fenno RichardF., 1978, HOMESTYLE HOUSE MEMB
[7]   Exploratory data analysis for complex models [J].
Gelman, A .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2004, 13 (04) :755-779
[8]  
Gelman A, 2003, BAYESIAN DATA ANAL
[9]  
GELMAN A, 2003, BUGS R FUNCTIONS CAL
[10]  
Gelman A., 1992, STAT SCI, V7, P457, DOI DOI 10.1214/SS/1177011136