Hydrogen production by steam reforming of bio-oil using coprecipitated Ni-Al catalysts.: Acetic acid as a model compound

被引:138
作者
Galdámez, JR [1 ]
García, L [1 ]
Bilbao, R [1 ]
机构
[1] Univ Zaragoza, Aragon Inst Engn Res, Dept Chem & Environm Engn, Zaragoza 50018, Spain
关键词
D O I
10.1021/ef049718g
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Catalytic steam reforming of bio-oil is a promising process for hydrogen production from biomass. Bio-oil is, a complex mixture of a large number of compounds (acids, aldehydes, alcohols, and ketones, among other compounds), and acetic acid has been selected as a model compound. The experimental work has been conducted in a fluidized-bed reactor. Noncatalytic steam reforming of acetic acid has been performed from 450 degrees C to 700 degrees C. For catalytic experiments, coprecipitated Ni-Al catalysts, some promoted with lanthanum, have been selected, because of their high mechanical strength and suitable performance in biomass steam gasification. The presence of the catalyst, its reduction, promotion with lanthanum, and the influence of space velocity on gas yields have been analyzed at 650 degrees C. Catalytic experiments show a significant increase in total gas, H-2, and CO2 yields, whereas CH4 and C-2 yields decrease, when compared with those from noncatalytic experiments. Gas yields obtained in the catalytic process present a shift from the noncatalytic process to equilibrium gas yields. Promotion with lanthanum does not increase the H-2 yield achieved with the Ni-Al catalyst. Simple first-order kinetic equations have been proposed for the formation of H-2 and CO2 and the disappearance of CH4 and C-2.
引用
收藏
页码:1133 / 1142
页数:10
相关论文
共 37 条
[1]   STEAM REFORMING OF METHANE ON REDUCED NON-STOICHIOMETRIC NICKEL ALUMINATE CATALYSTS [J].
ALUBAID, A ;
WOLF, EE .
APPLIED CATALYSIS, 1988, 40 (1-2) :73-85
[2]   Biomass gasification in supercritical water [J].
Antal, MJ ;
Allen, SG ;
Schulman, D ;
Xu, XD ;
Divilio, RJ .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2000, 39 (11) :4040-4053
[3]   A NEW CATALYST FOR THE CATALYTIC GASIFICATION OF BIOMASS [J].
ARAUZO, J ;
RADLEIN, D ;
PISKORZ, J ;
SCOTT, DS .
ENERGY & FUELS, 1994, 8 (06) :1192-1196
[4]   Catalytic pyrogasification of biomass. Evaluation of modified nickel catalysts [J].
Arauzo, J ;
Radlein, D ;
Piskorz, J ;
Scott, DS .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1997, 36 (01) :67-75
[5]   Biomass gasification to hydrogen and syngas at low temperature: Novel catalytic system using fluidized-bed reactor [J].
Asadullah, M ;
Ito, S ;
Kunimori, K ;
Yamada, M ;
Tomishige, K .
JOURNAL OF CATALYSIS, 2002, 208 (02) :255-259
[6]   Catalytic pyrolysis of biomass for hydrogen rich fuel gas production [J].
Chen, G ;
Andries, J ;
Spliethoff, H .
ENERGY CONVERSION AND MANAGEMENT, 2003, 44 (14) :2289-2296
[7]   Hydrogen by catalytic steam reforming of liquid byproducts from biomass thermoconversion processes [J].
Czernik, S ;
French, R ;
Feik, C ;
Chornet, E .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2002, 41 (17) :4209-4215
[8]  
CZERNIK S, 1997, DEV THERMOCHEMICAL B, V1, P672
[9]   Gaseous products from biomass by pyrolysis and gasification: effects of catalyst on hydrogen yield [J].
Demirbas, A .
ENERGY CONVERSION AND MANAGEMENT, 2002, 43 (07) :897-909
[10]   Production of hydrogen for fuel cells by reformation of biomass-derived ethanol [J].
Fatsikostas, AN ;
Kondarides, DI ;
Verykios, XE .
CATALYSIS TODAY, 2002, 75 (1-4) :145-155