Antioxidant status and stress resistance in long- and short-lived lines of Drosophila melanogaster

被引:65
作者
Mockett, RJ
Orr, WC
Rahmandar, JJ
Sohal, BH
Sohal, RS
机构
[1] Univ So Calif, Sch Pharm, Dept Mol Pharmacol & Toxicol, Los Angeles, CA 90089 USA
[2] So Methodist Univ, Dept Biol Sci, Dallas, TX 75275 USA
关键词
aging; antioxidant; Drosophila; evolution; lifespan variation; oxidative stress; selection for longevity; stress resistance;
D O I
10.1016/S0531-5565(00)00258-8
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
The purpose of this study was to understand the nature of the biochemical and physiological variations between genetically different lines of Drosophila melanogaster. Selection for early or delayed reproduction has given rise to lines with substantial and heritable differences in longevity. The hypotheses tested were that either: (i) a compensatory slowing of metabolism, (ii) increased antioxidative enzyme activities, or (iii) elevated resistance to stressful conditions underlie these differences in longevity. The metabolic rate, metabolic potential (i.e. total amount of oxygen consumed during average lifespan) and speed of walking were all greater in long-lived than in short-lived flies, but then was no enhancement of antioxidant defenses. In fact, catalase activity was significantly lower in the long-lived dies. Long life was largely maintained under heat stress and starvation conditions, and was maintained to a lesser extent upon exposure to paraquat, a superoxide radical generator. In contrast, the 'short-lived' flies had a longer lifespan under cold stress and hyperoxia, also an inducer of radical generation. These results contradict the first two hypotheses and suggest that alleles underlying either long or short life are linked with enhanced resistance to specific kinds of stress, which may account for the preservation of these alleles in the parental population. (C) 2001 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:441 / 463
页数:23
相关论文
共 49 条
[1]   GENETIC ALTERATION OF NORMAL AGING PROCESSES IS RESPONSIBLE FOR EXTENDED LONGEVITY IN DROSOPHILA [J].
ARKING, R ;
WELLS, RA .
DEVELOPMENTAL GENETICS, 1990, 11 (02) :141-148
[2]   Factors contributing to the plasticity of the extended longevity phenotypes of Drosophila [J].
Arking, R ;
Force, AG ;
Dudas, SP ;
Buck, S ;
Baker, GT .
EXPERIMENTAL GERONTOLOGY, 1996, 31 (06) :623-643
[3]   METABOLIC RATES IN GENETICALLY BASED LONG LIVED STRAINS OF DROSOPHILA [J].
ARKING, R ;
BUCK, S ;
WELLS, RA ;
PRETZLAFF, R .
EXPERIMENTAL GERONTOLOGY, 1988, 23 (01) :59-76
[4]   ELEVATED PARAQUAT RESISTANCE CAN BE USED AS A BIOASSAY FOR LONGEVITY IN A GENETICALLY BASED LONG-LIVED STRAIN OF DROSOPHILA [J].
ARKING, R ;
BUCK, S ;
BERRIOS, A ;
DWYER, S ;
BAKER, GT .
DEVELOPMENTAL GENETICS, 1991, 12 (05) :362-370
[5]   Forward and reverse selection for longevity in Drosophila is characterized by alteration of antioxidant gene expression and oxidative damage patterns [J].
Arking, R ;
Burde, V ;
Graves, K ;
Hari, R ;
Feldman, E ;
Zeevi, A ;
Soliman, S ;
Saraiya, A ;
Buck, S ;
Vettraino, J ;
Sathrasala, K ;
Wehr, N ;
Levine, RL .
EXPERIMENTAL GERONTOLOGY, 2000, 35 (02) :167-185
[6]   SUCCESSFUL SELECTION FOR INCREASED LONGEVITY IN DROSOPHILA - ANALYSIS OF THE SURVIVAL-DATA AND PRESENTATION OF A HYPOTHESIS ON THE GENETIC-REGULATION OF LONGEVITY [J].
ARKING, R .
EXPERIMENTAL GERONTOLOGY, 1987, 22 (03) :199-220
[7]   MECHANISM OF PARAQUAT TOXICITY IN MICE AND RATS [J].
BUS, JS ;
CAGEN, SZ ;
OLGAARD, M ;
GIBSON, JE .
TOXICOLOGY AND APPLIED PHARMACOLOGY, 1976, 35 (03) :501-513
[8]   THE EFFECTS OF GENE-ENVIRONMENT INTERACTION ON THE EXPRESSION OF LONGEVITY [J].
CLARE, MJ ;
LUCKINBILL, LS .
HEREDITY, 1985, 55 (AUG) :19-29
[9]  
DeckertCruz DJ, 1997, EVOLUTION, V51, P865, DOI 10.1111/j.1558-5646.1997.tb03668.x
[10]   Metabolic reserves and evolved stress resistance in Drosophila melanogaster [J].
Djawdan, M ;
Chippindale, AK ;
Rose, MR ;
Bradley, TJ .
PHYSIOLOGICAL ZOOLOGY, 1998, 71 (05) :584-594