Viscous nonlinear dynamics of twist and writhe

被引:97
作者
Goldstein, RE [1 ]
Powers, TR
Wiggins, CH
机构
[1] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA
[2] Univ Arizona, Program Appl Math, Tucson, AZ 85721 USA
[3] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
关键词
D O I
10.1103/PhysRevLett.80.5232
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Exploiting the "natural" frame of space curves, we formulate an intrinsic dynamics of a twisted elastic filament in a viscous fluid. Coupled nonlinear equations describing the temporal evolution of the filament's complex curvature and twist density capture the dynamic interplay of twist and writhe. These equations an used to illustrate a remarkable nonlinear phenomenon: geometric untwisting of open filaments, whereby twisting strains relax through a transient writhing instability without axial rotation. Experimentally observed writhing motions of fibers of the bacterium B. subtilis [N. PI. Mendelson et al,, J. Bacteriol. 177, 7060 (1995)] may be examples of this untwisting process.
引用
收藏
页码:5232 / 5235
页数:4
相关论文
共 36 条
[1]  
Alberts B., 1994, MOL BIOL CELL
[2]  
[Anonymous], TREATISE MATH THEORY
[3]   THEORY OF TWISTING AND BENDING OF CHAIN MACROMOLECULES - ANALYSIS OF THE FLUORESCENCE DEPOLARIZATION OF DNA [J].
BARKLEY, MD ;
ZIMM, BH .
JOURNAL OF CHEMICAL PHYSICS, 1979, 70 (06) :2991-3007
[4]   THERE IS MORE THAN ONE WAY TO FRAME A CURVE [J].
BISHOP, RL .
AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (03) :246-251
[5]  
Calugareanu G., 1959, REV MATH PURE APPL, V4, P5
[6]  
DARBOUX G, 1915, LECONS THEORIE GEN S, V1, P122
[7]  
Doi M., 1986, The theory of polymer dynamics
[10]   NONLINEAR DYNAMICS OF STIFF POLYMERS [J].
GOLDSTEIN, RE ;
LANGER, SA .
PHYSICAL REVIEW LETTERS, 1995, 75 (06) :1094-1097